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• Graph API allows HW backend to achieve high efficiency

• Same integration for multiple AI HW: CPU, GPU, and accelerators

Today

Deep Learning frameworksDeep Learning frameworks

Primitives APIPrimitives API

HW 
Accel

Future

Deep Learning frameworksDeep Learning frameworks

CPU
+ DL Acceleration

GPU
+DL Acceleration

HW 
Accel

Primitives API  +  Graph APIPrimitives API  +  Graph API

oneDNN

CPU
+ DL Acceleration

GPU
+DL Acceleration

oneDNN

oneDNN is evolving… 
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The driving forces of AI Optimization

Diversifying AI 
application

3

matmul

Recommendation 
Engine

matmul

Natural Language 
Processing

Conv

Computer 
Vision

Hardware 
Acceleration 
for AI

CPU
+ DL Acceleration

GPU
+DL Acceleration

Accelerators
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oneDNN Graph API
Framework 
Runtime 

Context

Graph
Rewrite 

get_partitions()

Framework Graph

Passing
Graph
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4
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Forming
graph
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oneDNN
Graph API add_op()

Backend decides
partition
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DL 
Framework

oneDNN
Graph
Impl.

1

3

4
2

compile() 

Backend compiles
partition

42

execute() 

Backend executes 
compiled partition

42

Designed to Interoperate and compose with framework components
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DL Frameworks

Deep learning with oneDNN Graph

oneDNN Graph Integration Layer

oneDNN Graph API
Partition Compilation Execution

Code Gen Algorithm selection

Primitives 
+ Post-Op 

Fusions

oneDNN Graph 
Implementation

Micro kernel

oneDNN Graph 
Compiler 

low-level graph compiler 
focusing on code generation 
for performance-critical DNN 
graph partition 
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Tunable Op 

Parallel decomposition
Loop tiling & ordering

Data layout

oneDNN Graph Compiler
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Graph-based 
Heuristic

Microkernel

Tensor & memory 
optimization

Fusible op

Loop merge

OP Graph 

Tensor Expression

Binary

CSE, DCE Register 
Allocation

Const 
Folding



Recipe for efficient kernel

MicrokernelParallelize task 
decomposition

Data layout

Output Tensor

Loop tiling & 
ordering

Tunable  
hyperparameters

Hardware efficiency 

Single-core task size Multi-Core

Microkernel size Vector/Matrix

Loop tiling size 
Loop order

Cache/TLB

Data blocking factor Cache/TLB
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Parallel task decomposition

Microkernels

Kernel 
(output)

Single-core 
Kernels  

Propose single-core kernel size 
options, using all cores with 
balanced load

Propose options of microkernel 
sizes with high vector/matrix 
utilization

Search for a pair of single kernel 
size and microkernel size based 
on a cost model
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Microkernel 

Batch_reduce_gemm(A[0:32, 0:32], 
B[0:32, 0:32],  
C[0:32, 0:32], 
batch = 16)

{
tileloaddt1(tmm0, C); 
tileloaddt1(tmm1, C + 64); 
tileloaddt1(tmm2, C + 2048); 
tileloaddt1(tmm3, C + 2112); 
for (int i = 0; i < batch; i++) { 

tileloaddt1(tmm4, A); 
tileloaddt1(tmm5, A + 1024); 
tileloaddt1(tmm6, B); 
tdbpf16ps(tmm0, tmm4, tmm6); 
tdbpf16ps(tmm2, tmm5, tmm6); 
tileloaddt1(tmm7, B + 64); 
tdbpf16ps(tmm1, tmm4, tmm7); 
tdbpf16ps(tmm3, tmm5, tmm7); 
A += 1024; B += 1024; 

} 
tilestored(C, tmm0); 
tilestored(C + 64, tmm1); 
tilestored(C + 2048, tmm2); 
tilestored(C + 2112, tmm3);

}

Microkernel

𝐶[𝑀, 𝑁] = ෍ 𝐴௜ 𝑀, 𝐾 ∗ 𝐵௜[𝐾,𝑁]

௕௔௧௖௛

௜ୀ଴

Batch-Reduce gemm interface 

Microkernel code example

𝐶[32,32] =෍𝐴௜ 32,32 ∗ 𝐵௜[32,32]

ଵ଺

௜ୀ଴

Specialized for specific tensor shape

Aligned with HW vector/matrix size

High-Performance Deep Learning via a Single Building 
Block, Evangelos Georganas, Alexander Heinecke

Vector/Matrix 
instructions
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Unroll, software pipelining, prefetching

Careful and “manual” register 
blocking and allocation

Vectorize/Tensorize

Based on carefully hand-crafted code template



Synthesized kernel for fused op

Parallel loop m_p = 0, M, MBP {
Parallel loop n_p = 0, N, NBP {

Loop m_o = m_p * MBP, (m_p + 1) * MBP, MB {
Loop n_o = n_p * NBP, (n_p + 1) * NBP, NB {

Loop k_o = 0, K/KB {
A’[0:MB, 0:KB] = A[m_o, k_o, 0:MB, 0:KB];
B’[0:KB, 0:NB] = B[k_o, n_o, 0:KB, 0:NB]
Call Batch_reduce_gemm(A’[0:MB, 0:KB], 

B’[0:NB, 0:KB],  
C’[0:MB, 0:NB], Batch = 1); 

} 
C[m_o, n_o, 0:MB, 0:NB]) = Relu(C’[0:MB, 0:NB])

}
}

}
}

}

Loop ordering 
& tiling

Microkernel

Potential place to 
apply fusion

Parallelized for 
multiple core

Blocked Layout

Good heuristic required to decompose to single-core kernel and microkernel, loop order, and data layout
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C – Output tensor, [M][N]
A – Input tensor (activations) [M][K]
B – Input tensor (weights) [K][N]

Parallel loop m_p = 0, M, MBP {
Parallel loop n_p = 0, N, NBP {
Loop m_o = m_p * MBP, (m_p + 1) * MBP, MB {
Loop n_o = n_p * NBP, (n_p + 1) * NBP, NB {
Loop k_o = 0, K/KB {

A’[0:MB, 0:KB] = A[m_o, k_o, 0:MB, 0:KB];
B’[0:KB, 0:NB] = B[k_o, n_o, 0:KB, 0:NB]
Call Batch_reduce_gemm(A’[0:MB, 0:KB], 

B’[0:NB, 0:KB],  
C’[0:MB, 0:NB]); 

} 
C[m_o, n_o, 0:MB, 0:NB]) = relu ( C’[0:MB, 0:NB])

}
}

}
}

}

matmul
relu

matmul
relu

matmul
relu

matmul
relu

Parallel loop m_p = 0, M, MBP {
Parallel loop n_p = 0, N, NBP {

Loop m_o = m_p * MBP, (m_p + 1) * MBP, MB {
Loop n_o = n_p * NBP, (n_p + 1) * NBP, NB {

Loop k_o = 0, K/KB {
A’[0:MB, 0:KB] = A[m_o, k_o, 0:MB, 0:KB];
B’[0:KB, 0:NB] = B[k_o, n_o, 0:KB, 0:NB]
Call Batch_reduce_gemm(A’[0:MB, 0:KB], 

B’[0:NB, 0:KB],  
C’[0:MB, 0:NB]); 

} 
C[m_o, n_o, 0:MB, 0:NB]) = relu ( C’[0:MB, 0:NB])

} } } } }

Parallel loop m_p = 0, M, MBP {
Parallel loop n_p = 0, N, NBP {

Loop m_o = m_p * MBP, (m_p + 1) * MBP, MB {
Loop n_o = n_p * NBP, (n_p + 1) * NBP, NB {

Loop k_o = 0, K/KB {
A’[0:MB, 0:KB] = A[m_o, k_o, 0:MB, 0:KB];
B’[0:KB, 0:NB] = B[k_o, n_o, 0:KB, 0:NB]
Call Batch_reduce_gemm(A’[0:MB, 0:KB], 

B’[0:NB, 0:KB],  
C’[0:MB, 0:NB]); 

} 
C[m_o, n_o, 0:MB, 0:NB]) = relu ( C’[0:MB, 0:NB])

} } } } }

Parallel loop m_p = 0, M, MBP {
Parallel loop n_p = 0, N, NBP {

Loop m_o = m_p * MBP, (m_p + 1) * MBP, MB {
Loop n_o = n_p * NBP, (n_p + 1) * NBP, NB {

Loop k_o = 0, K/KB {
A’[0:MB, 0:KB] = A[m_o, k_o, 0:MB, 0:KB];

B’[0:KB, 0:NB] = B[k_o, n_o, 0:KB, 0:NB]
Call Batch_reduce_gemm(A’[0:MB, 0:KB], 

B’[0:NB, 0:KB],  
C’[0:MB, 0:NB]); 

} 
C[m_o, n_o, 0:MB, 0:NB]) = relu ( C’[0:MB, 0:NB])

} } } } }

Compile subgraph by 
composing kernels
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Parallel task decomposition within Graph context

Output of first 
tunable op

Decomposing to 
single-core kernels

Read access from a 
single-core kernel from 
next tunable op

Graph-based heuristic considers the cost of reading activation data from last tunable op

Next tunable op reads 
activation from 2 core’s 
L2 cache

Next tunable op 
reads activation from 
4 core’s L2 cache

Next tunable op reads 
activation from same core’s 
L2 cache
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Graph-based heuristic for Single-core Kernel 

M1

K

K

N

Choose blocked layout works best 
for overall performance 

Matmul2

Matmul1

M2

M1
K

K

N

Matmul2

Matmul1

M2

M2>>N

M1<<N

Graph knows input/weight is “hot” or “cold”

Input stationary preferred as weight is usually “cold”

Loop ordering
Blocked data layout 



Aggressive Fusion
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Aggressive fusion covers MLP, MHA, Conv 
Block, both inference and training, fp32, int8, 
and bf16 on CPU

Substantial performance gains observed

public layout input

public layout

matmul
relu

pack/reorder

Unpack/reorder

public layout

matmul
relu

pack/reorder

Unpack/reorder

public layout output

matmul
relu

pack/reorder

Unpack/reorder

Post-op fusion

matmul
relu

matmul
relu

public layout input

blocked layout

blocked layout

public layout 
output

pack/reorder

Unpack/reorder

matmul
relu

Aggressive fusion

Higher is 
better experimental



Summary

oneDNN Graph API offers flexible API to accelerate DNN Graph with partitioning 

oneDNN Graph compiler merges nested loops of tuable op and fusible op, compose a 
large kernel for aggressive fusion, and  Automate kernel generation 

Recipes from hand-tuned kernel, micro-kernel,  and blocked layout

Graph-based heuristic further improves kernel performance within graph context
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Notices and Disclaimers 

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel 
Corporation or its subsidiaries. Other names and brands may be claimed as the property of 
others.


