
Generating Efficient
Code for Deep Neural
Network

Jianhui Li
Software and Advanced Technology Group

• Graph API allows HW backend to achieve high efficiency

• Same integration for multiple AI HW: CPU, GPU, and accelerators

Today

Deep Learning frameworksDeep Learning frameworks

Primitives APIPrimitives API

HW
Accel

Future

Deep Learning frameworksDeep Learning frameworks

CPU
+ DL Acceleration

GPU
+DL Acceleration

HW
Accel

Primitives API + Graph APIPrimitives API + Graph API

oneDNN

CPU
+ DL Acceleration

GPU
+DL Acceleration

oneDNN

oneDNN is evolving…

2SOFTWARE AND ADVANCED TECHNOLOGY GROUP

The driving forces of AI Optimization

Diversifying AI
application

3

matmul

Recommendation
Engine

matmul

Natural Language
Processing

Conv

Computer
Vision

Hardware
Acceleration
for AI

CPU
+ DL Acceleration

GPU
+DL Acceleration

Accelerators

SOFTWARE AND ADVANCED TECHNOLOGY GROUP

oneDNN Graph API
Framework
Runtime

Context

Graph
Rewrite

get_partitions()

Framework Graph

Passing
Graph

1

3

4

2

Forming
graph

1

3

4

2

oneDNN
Graph API add_op()

Backend decides
partition

4

2

1

3

4

2
DL
Framework

oneDNN
Graph
Impl.

1

3

4
2

compile()

Backend compiles
partition

42

execute()

Backend executes
compiled partition

42

Designed to Interoperate and compose with framework components
4SOFTWARE AND ADVANCED TECHNOLOGY GROUP

DL Frameworks

Deep learning with oneDNN Graph

oneDNN Graph Integration Layer

oneDNN Graph API
Partition Compilation Execution

Code Gen Algorithm selection

Primitives
+ Post-Op

Fusions

oneDNN Graph
Implementation

Micro kernel

oneDNN Graph
Compiler

low-level graph compiler
focusing on code generation
for performance-critical DNN
graph partition

5SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Tunable Op

Parallel decomposition
Loop tiling & ordering

Data layout

oneDNN Graph Compiler

6SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Graph-based
Heuristic

Microkernel

Tensor & memory
optimization

Fusible op

Loop merge

OP Graph

Tensor Expression

Binary

CSE, DCE Register
Allocation

Const
Folding

Recipe for efficient kernel

MicrokernelParallelize task
decomposition

Data layout

Output Tensor

Loop tiling &
ordering

Tunable
hyperparameters

Hardware efficiency

Single-core task size Multi-Core

Microkernel size Vector/Matrix

Loop tiling size
Loop order

Cache/TLB

Data blocking factor Cache/TLB

7SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Parallel task decomposition

Microkernels

Kernel
(output)

Single-core
Kernels

Propose single-core kernel size
options, using all cores with
balanced load

Propose options of microkernel
sizes with high vector/matrix
utilization

Search for a pair of single kernel
size and microkernel size based
on a cost model

8SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Microkernel

Batch_reduce_gemm(A[0:32, 0:32],
B[0:32, 0:32],
C[0:32, 0:32],
batch = 16)

{
tileloaddt1(tmm0, C);
tileloaddt1(tmm1, C + 64);
tileloaddt1(tmm2, C + 2048);
tileloaddt1(tmm3, C + 2112);
for (int i = 0; i < batch; i++) {

tileloaddt1(tmm4, A);
tileloaddt1(tmm5, A + 1024);
tileloaddt1(tmm6, B);
tdbpf16ps(tmm0, tmm4, tmm6);
tdbpf16ps(tmm2, tmm5, tmm6);
tileloaddt1(tmm7, B + 64);
tdbpf16ps(tmm1, tmm4, tmm7);
tdbpf16ps(tmm3, tmm5, tmm7);
A += 1024; B += 1024;

}
tilestored(C, tmm0);
tilestored(C + 64, tmm1);
tilestored(C + 2048, tmm2);
tilestored(C + 2112, tmm3);

}

Microkernel

𝐶[𝑀, 𝑁] = ෍ 𝐴௜ 𝑀, 𝐾 ∗ 𝐵௜[𝐾,𝑁]

௕௔௧௖௛

௜ୀ଴

Batch-Reduce gemm interface

Microkernel code example

𝐶[32,32] =෍𝐴௜ 32,32 ∗ 𝐵௜[32,32]

ଵ଺

௜ୀ଴

Specialized for specific tensor shape

Aligned with HW vector/matrix size

High-Performance Deep Learning via a Single Building
Block, Evangelos Georganas, Alexander Heinecke

Vector/Matrix
instructions

9SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Unroll, software pipelining, prefetching

Careful and “manual” register
blocking and allocation

Vectorize/Tensorize

Based on carefully hand-crafted code template

Synthesized kernel for fused op

Parallel loop m_p = 0, M, MBP {
Parallel loop n_p = 0, N, NBP {

Loop m_o = m_p * MBP, (m_p + 1) * MBP, MB {
Loop n_o = n_p * NBP, (n_p + 1) * NBP, NB {

Loop k_o = 0, K/KB {
A’[0:MB, 0:KB] = A[m_o, k_o, 0:MB, 0:KB];
B’[0:KB, 0:NB] = B[k_o, n_o, 0:KB, 0:NB]
Call Batch_reduce_gemm(A’[0:MB, 0:KB],

B’[0:NB, 0:KB],
C’[0:MB, 0:NB], Batch = 1);

}
C[m_o, n_o, 0:MB, 0:NB]) = Relu(C’[0:MB, 0:NB])

}
}

}
}

}

Loop ordering
& tiling

Microkernel

Potential place to
apply fusion

Parallelized for
multiple core

Blocked Layout

Good heuristic required to decompose to single-core kernel and microkernel, loop order, and data layout

10SOFTWARE AND ADVANCED TECHNOLOGY GROUP

C – Output tensor, [M][N]
A – Input tensor (activations) [M][K]
B – Input tensor (weights) [K][N]

Parallel loop m_p = 0, M, MBP {
Parallel loop n_p = 0, N, NBP {
Loop m_o = m_p * MBP, (m_p + 1) * MBP, MB {
Loop n_o = n_p * NBP, (n_p + 1) * NBP, NB {
Loop k_o = 0, K/KB {

A’[0:MB, 0:KB] = A[m_o, k_o, 0:MB, 0:KB];
B’[0:KB, 0:NB] = B[k_o, n_o, 0:KB, 0:NB]
Call Batch_reduce_gemm(A’[0:MB, 0:KB],

B’[0:NB, 0:KB],
C’[0:MB, 0:NB]);

}
C[m_o, n_o, 0:MB, 0:NB]) = relu (C’[0:MB, 0:NB])

}
}

}
}

}

matmul
relu

matmul
relu

matmul
relu

matmul
relu

Parallel loop m_p = 0, M, MBP {
Parallel loop n_p = 0, N, NBP {

Loop m_o = m_p * MBP, (m_p + 1) * MBP, MB {
Loop n_o = n_p * NBP, (n_p + 1) * NBP, NB {

Loop k_o = 0, K/KB {
A’[0:MB, 0:KB] = A[m_o, k_o, 0:MB, 0:KB];
B’[0:KB, 0:NB] = B[k_o, n_o, 0:KB, 0:NB]
Call Batch_reduce_gemm(A’[0:MB, 0:KB],

B’[0:NB, 0:KB],
C’[0:MB, 0:NB]);

}
C[m_o, n_o, 0:MB, 0:NB]) = relu (C’[0:MB, 0:NB])

} } } } }

Parallel loop m_p = 0, M, MBP {
Parallel loop n_p = 0, N, NBP {

Loop m_o = m_p * MBP, (m_p + 1) * MBP, MB {
Loop n_o = n_p * NBP, (n_p + 1) * NBP, NB {

Loop k_o = 0, K/KB {
A’[0:MB, 0:KB] = A[m_o, k_o, 0:MB, 0:KB];
B’[0:KB, 0:NB] = B[k_o, n_o, 0:KB, 0:NB]
Call Batch_reduce_gemm(A’[0:MB, 0:KB],

B’[0:NB, 0:KB],
C’[0:MB, 0:NB]);

}
C[m_o, n_o, 0:MB, 0:NB]) = relu (C’[0:MB, 0:NB])

} } } } }

Parallel loop m_p = 0, M, MBP {
Parallel loop n_p = 0, N, NBP {

Loop m_o = m_p * MBP, (m_p + 1) * MBP, MB {
Loop n_o = n_p * NBP, (n_p + 1) * NBP, NB {

Loop k_o = 0, K/KB {
A’[0:MB, 0:KB] = A[m_o, k_o, 0:MB, 0:KB];

B’[0:KB, 0:NB] = B[k_o, n_o, 0:KB, 0:NB]
Call Batch_reduce_gemm(A’[0:MB, 0:KB],

B’[0:NB, 0:KB],
C’[0:MB, 0:NB]);

}
C[m_o, n_o, 0:MB, 0:NB]) = relu (C’[0:MB, 0:NB])

} } } } }

Compile subgraph by
composing kernels

11SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Parallel task decomposition within Graph context

Output of first
tunable op

Decomposing to
single-core kernels

Read access from a
single-core kernel from
next tunable op

Graph-based heuristic considers the cost of reading activation data from last tunable op

Next tunable op reads
activation from 2 core’s
L2 cache

Next tunable op
reads activation from
4 core’s L2 cache

Next tunable op reads
activation from same core’s
L2 cache

12SOFTWARE AND ADVANCED TECHNOLOGY GROUP

13SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Graph-based heuristic for Single-core Kernel

M1

K

K

N

Choose blocked layout works best
for overall performance

Matmul2

Matmul1

M2

M1
K

K

N

Matmul2

Matmul1

M2

M2>>N

M1<<N

Graph knows input/weight is “hot” or “cold”

Input stationary preferred as weight is usually “cold”

Loop ordering
Blocked data layout

Aggressive Fusion

14SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Aggressive fusion covers MLP, MHA, Conv
Block, both inference and training, fp32, int8,
and bf16 on CPU

Substantial performance gains observed

public layout input

public layout

matmul
relu

pack/reorder

Unpack/reorder

public layout

matmul
relu

pack/reorder

Unpack/reorder

public layout output

matmul
relu

pack/reorder

Unpack/reorder

Post-op fusion

matmul
relu

matmul
relu

public layout input

blocked layout

blocked layout

public layout
output

pack/reorder

Unpack/reorder

matmul
relu

Aggressive fusion

Higher is
better experimental

Summary

oneDNN Graph API offers flexible API to accelerate DNN Graph with partitioning

oneDNN Graph compiler merges nested loops of tuable op and fusible op, compose a
large kernel for aggressive fusion, and Automate kernel generation

Recipes from hand-tuned kernel, micro-kernel, and blocked layout

Graph-based heuristic further improves kernel performance within graph context

15SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Other names and brands may be claimed as the property of
others.

