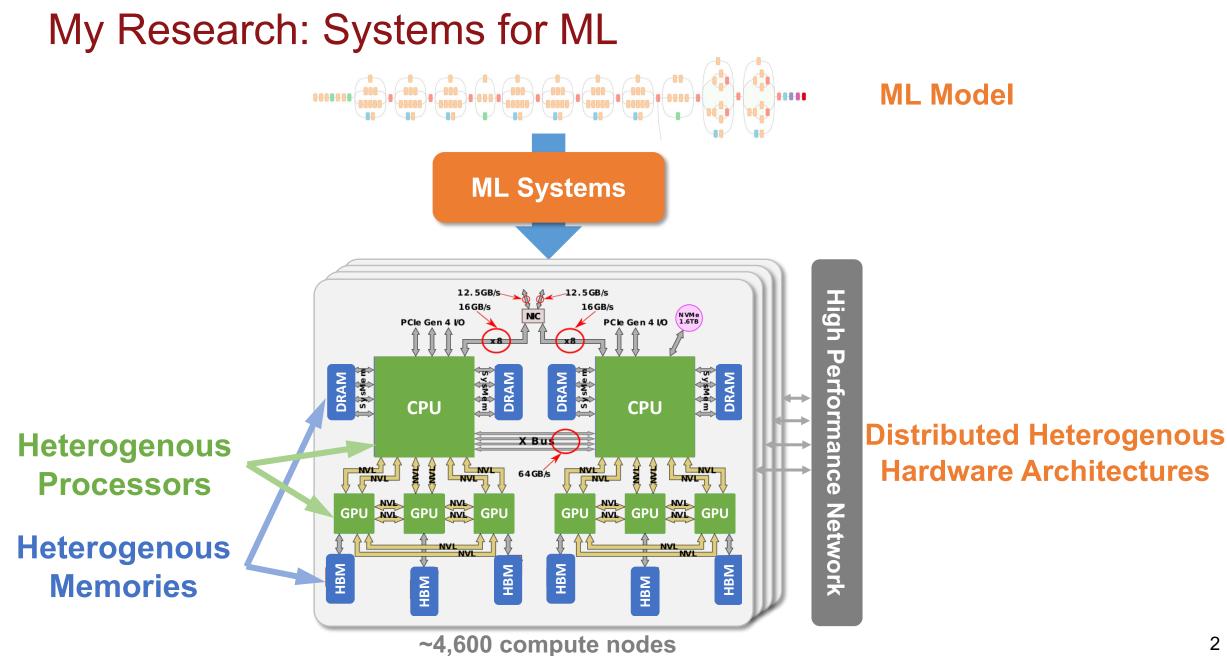
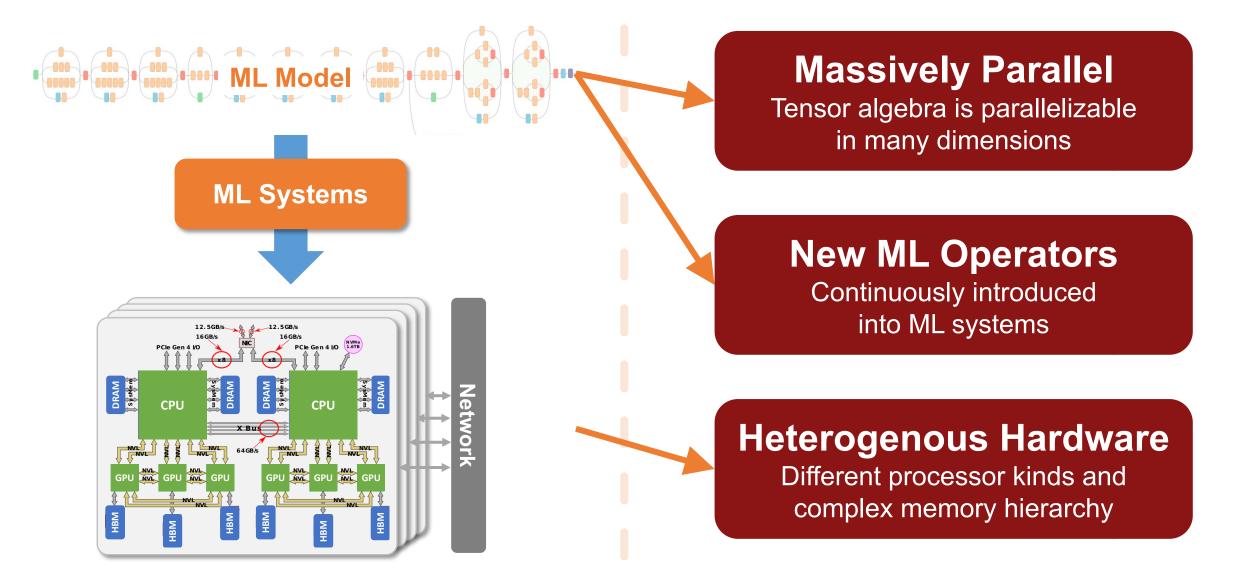
Automatically Discovering ML Optimizations

Zhihao Jia

Computer Science Department Carnegie Mellon University



Challenges of Building ML Systems



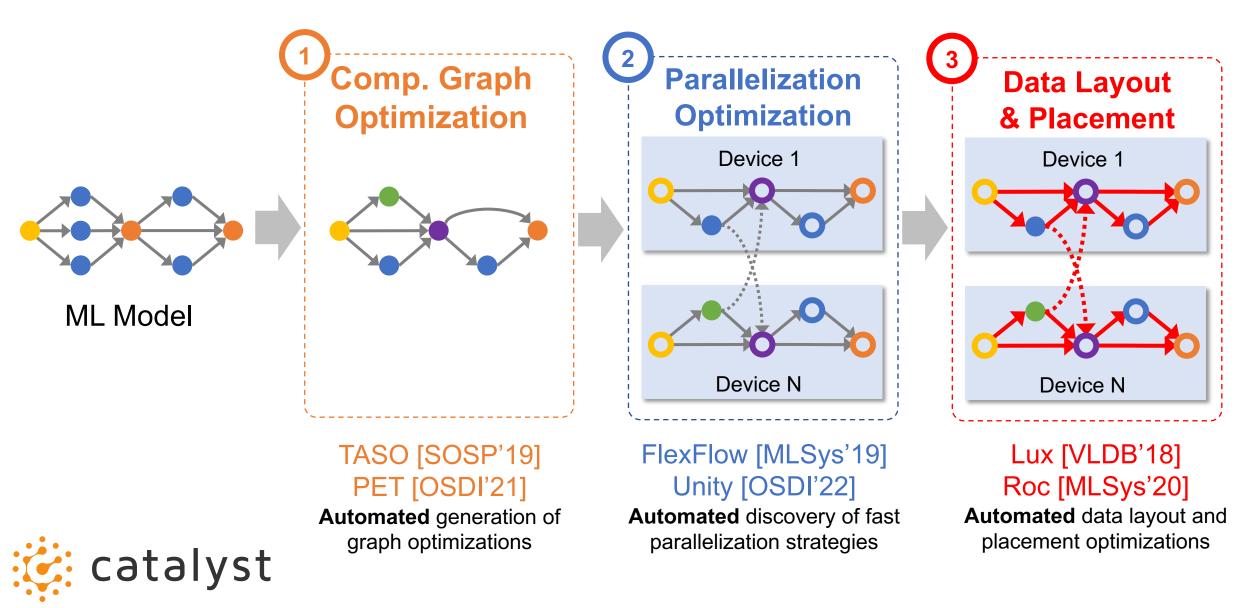
CMU Automated Learning Systems Lab

Mission: Automate the design and optimization of ML systems by leveraging

- 1. Statistical and mathematical properties of ML algorithms
- 2. Domain knowledge of modern hardware platforms

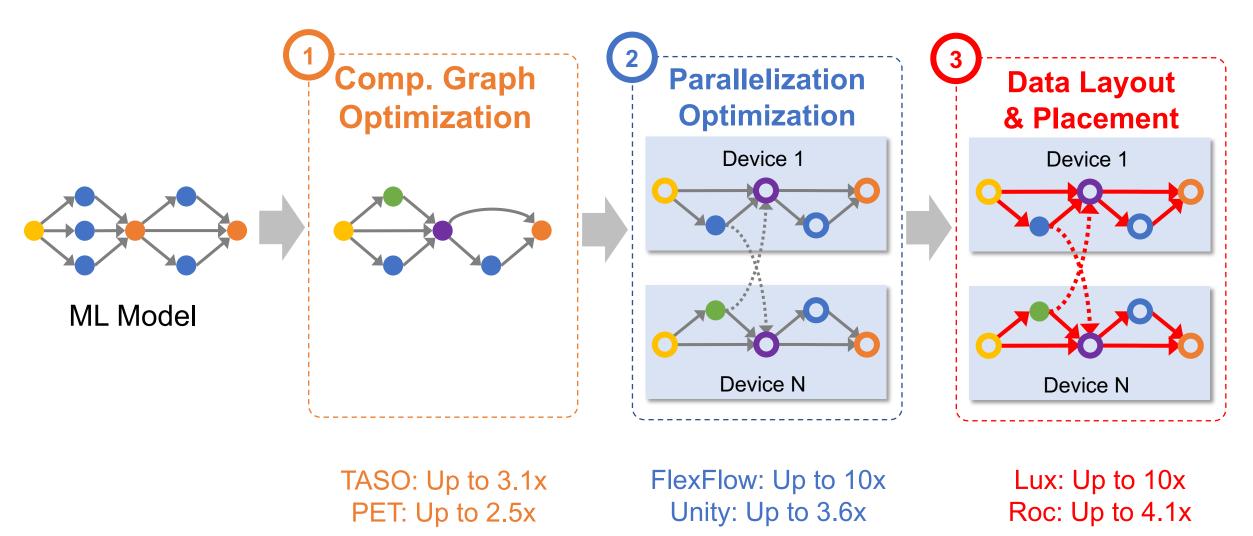
https://catalyst.cs.cmu.edu/

Our Research: Automated Discovery of ML Optimizations



5

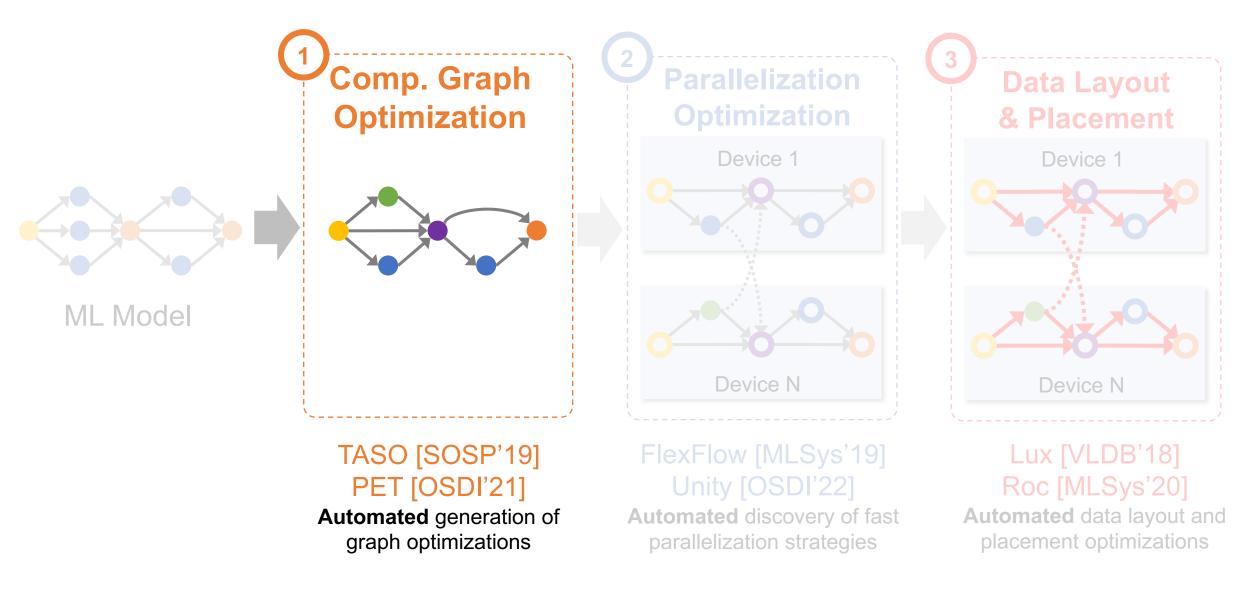
Lesson 1: Automated Approaches Offer 3-10x Improvement



Advantages of Automated Approaches

- Better runtime performance: discovering novel optimizations hard to manually designed, 3-10x speedup over manual optimizations
- Less engineering effort: code for discovering optimizations is generally much less than manual implementation of these optimizations
- Stronger correctness guarantees: using formal verification techniques

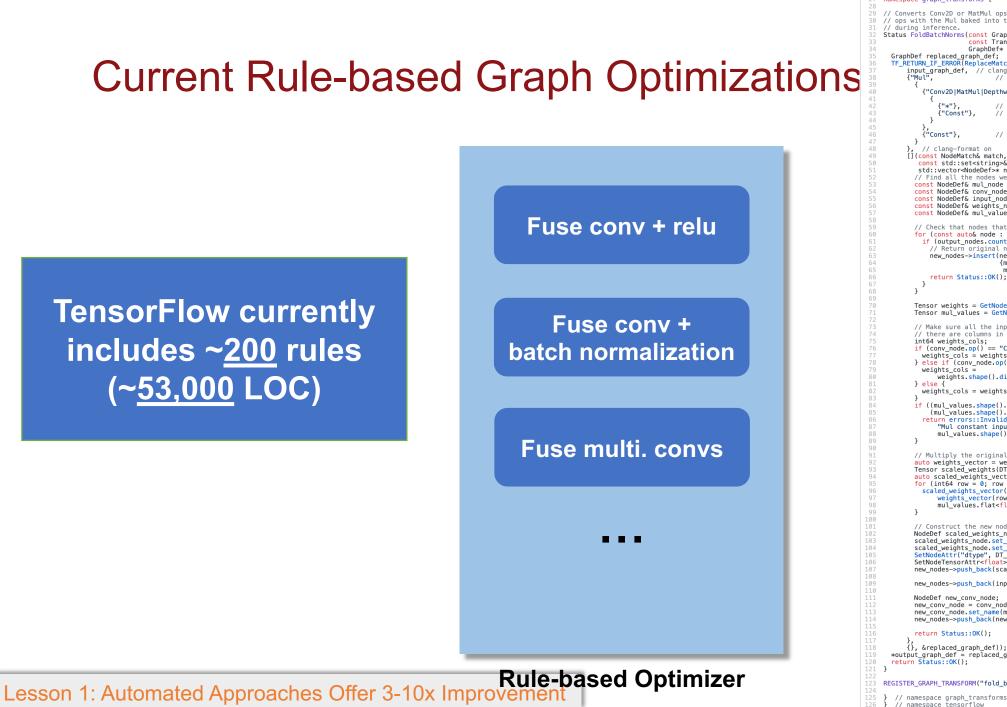
Our Research: Automated Discovery of ML Optimizations



8

Current Rule-based Graph Optimizations

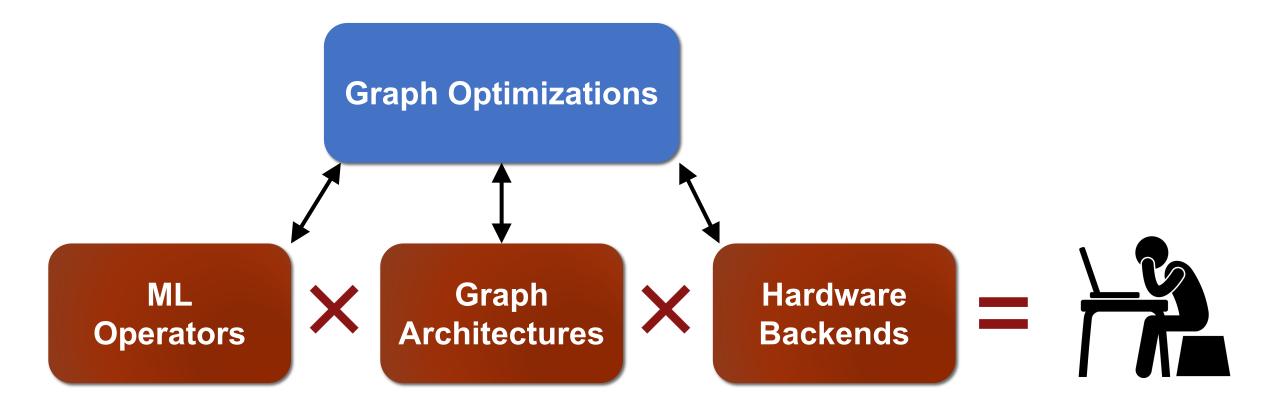




namespace graph_transforms { // Converts Conv2D or MatMul ops followed by column-wise Muls into equivalent // ops with the Mul baked into the convolution weights, to save computation Status FoldBatchNorms(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def) { GraphDef replaced_graph_def; TF_RETURN_IF_ERROR(ReplaceMatchingOpTypes(input_graph_def, // clang-format off
{"Mul", // mul node {"Conv2D|MatMul|DepthwiseConv2dNative", // conv_node // input_node // weights_node // mul_values_node }, // clang-format on
[](const NodeMatch& match, const std::set<string>& input_nodes, const std::set<string>& output_nodes, std::vector<NodeDef>* new_nodes) { // Find all the nodes we expect in the subgraph. const NodeDef& mul_node = match.node; const NodeDef& conv node = match.inputs[0].node; const NodeDef& input node = match.inputs[0].inputs[0].node; const NodeDef& weights_node = match.inputs[0].inputs[1].node; const NodeDef& mul_values_node = match.inputs[1].node; // Check that nodes that we use are not used somewhere else. for (const auto& node : {conv_node, weights_node, mul_values_node}) { if (output_nodes.count(node.name())) // Return original nodes. new_nodes->insert(new_nodes->end(), {mul_node, conv_node, input_node, weights_node, mul_values_node}); return Status::OK(); Tensor weights = GetNodeTensorAttr(weights_node, "value"); Tensor mul_values = GetNodeTensorAttr(mul_values_node, "value"); // Make sure all the inputs really are vectors, with as many entries as // there are columns in the weights. if (conv_node.op() == "Conv2D") { weights_cols = weights.shape().dim_size(3); } else if (conv_node.op() == "DepthwiseConv2dNative") { weights.shape().dim_size(2) * weights.shape().dim_size(3); weights_cols = weights.shape().dim_size(1); if ((mul_values.shape().dims() != 1) || (mul_values.shape().dim_size(0) != weights_cols)) { return errors::InvalidArgument("Mul constant input to batch norm has bad shape: ", mul_values.shape().DebugString()); // Multiply the original weights by the scale vector.
auto weights_vector = weights.flat<float>(); Tensor scaled weights(DT FLOAT, weights.shape()); auto scaled weights vector = scaled weights.flat<float>(); for (int64 row = 0; row < weights_vector.dimension(0); ++row) {</pre> scaled_weights_vector(row) = weights_vector(row) * mul_values.flat<float>()(row % weights_cols); // Construct the new nodes NodeDef scaled_weights_node; scaled_weights_node.set_op("Const"); scaled_weights_node.set_name(weights_node.name()); SetNodeAttr("dtype", DT_FLOAT, &scaled_weights_node); SetNodeTensorAttr<float>("value", scaled_weights, &scaled_weights_node); new_nodes->push_back(scaled_weights_node); new_nodes->push_back(input_node); NodeDef new_conv_node; new_conv_node = conv_node; new_conv_node.set_name(mul_node.name()); new_nodes->push_back(new_conv_node); {}, &replaced_graph_def)); *output_graph_def = replaced_graph_def; REGISTER_GRAPH_TRANSFORM("fold_batch_norms", FoldBatchNorms);

namespace tensorflow {

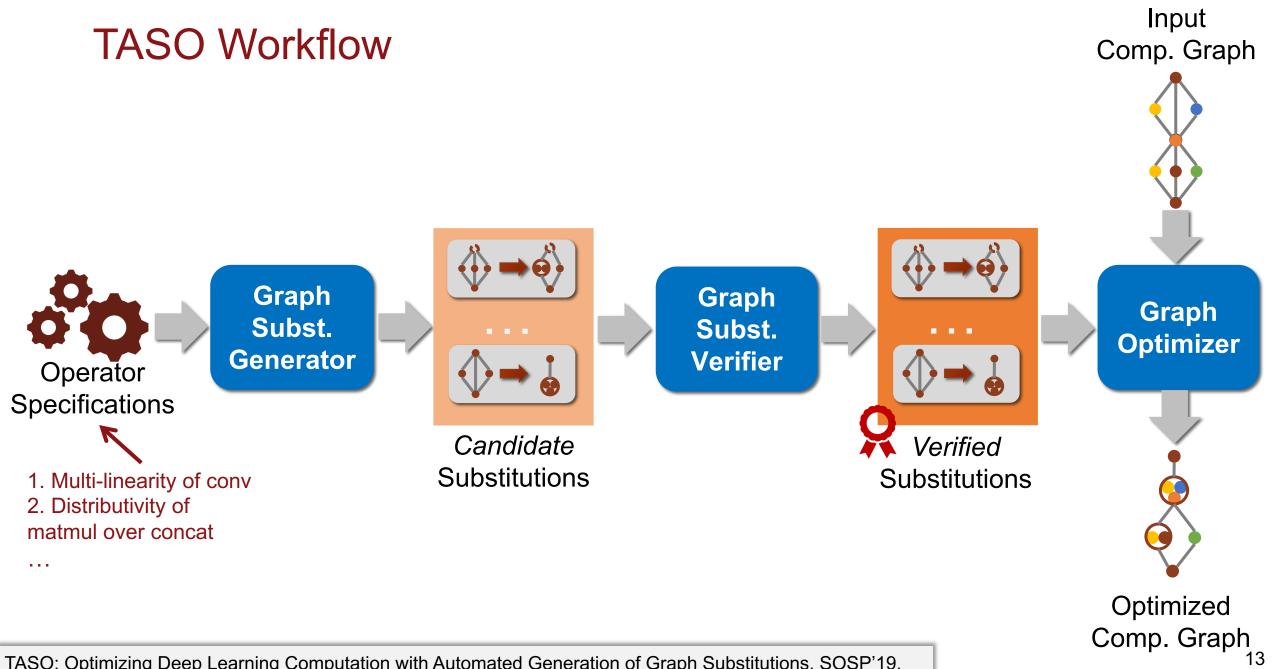
Infeasible to Manually Design Graph Optimizations



TASO: Tensor Algebra SuperOptimizer

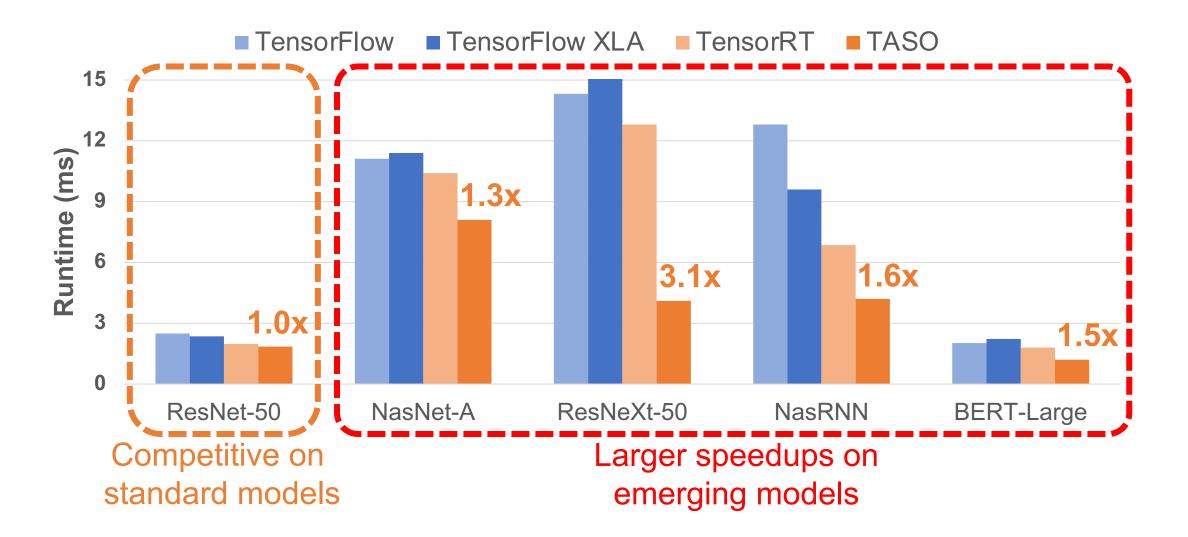
Key idea: replace manually-designed graph optimizations with *automated generation and verification* of graph substitutions for tensor algebra

- Less engineering effort: <u>53,000</u> LOC for manual graph optimizations in TensorFlow $\rightarrow 1,400$ LOC in TASO
- Better performance: outperform existing optimizers by up to 3x
- Stronger correctness: formally verify all generated substitutions



TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP'19.

End-to-end Inference Performance (Nvidia V100 GPU)



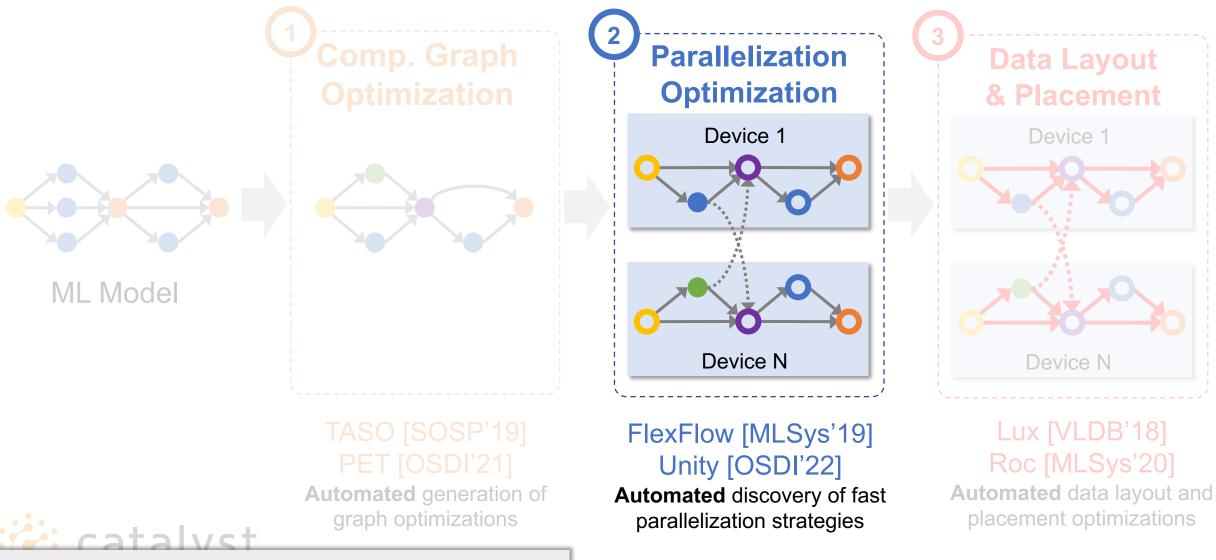
First DNN graph optimizer that automatically generates substitutions

- Less engineering effort
- Better runtime performance
- Stronger correctness guarantee

1. PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. OSDI'21.

- 2. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP'19.
- 3. Optimizing DNN Computation with Relaxed Graph Substitutions. MLSys'19.
- 4. Exploring Hidden Dimensions in Parallelizing Convolutional Neural Networks. ICML'18.

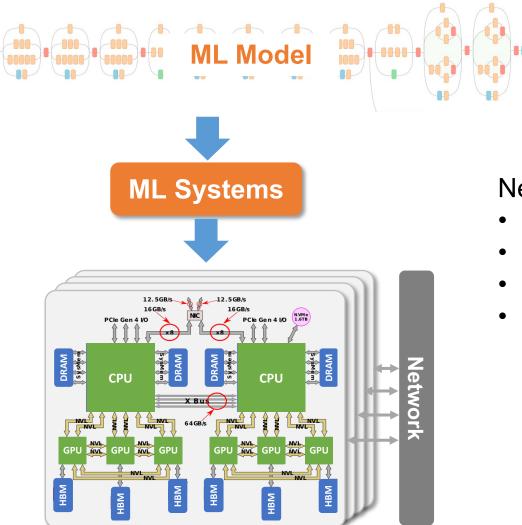
Our Research: Automated Discovery of ML Optimizations



Lesson 1: Automated Approaches Offer 3-10x Improvement

16

Challenges of Parallelizing DNN Training

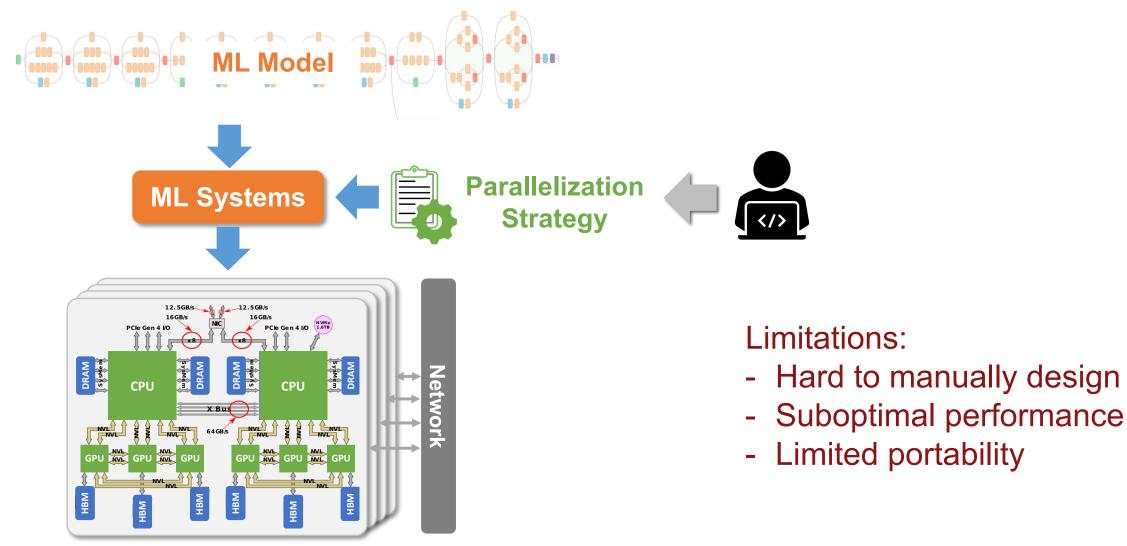


Need to simultaneously consider:

- Computation cost
- Communication overhead
- Resource usage
- Task scheduling

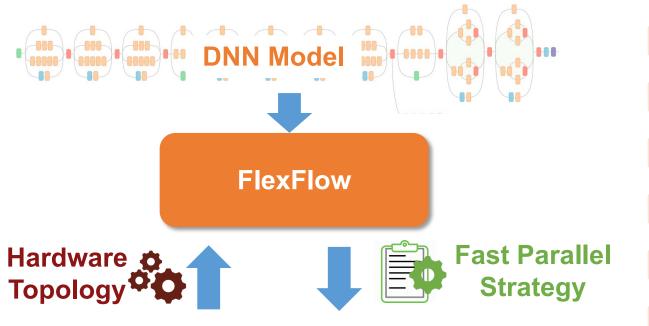
Lesson 1: Automated Approaches Offer 3-10x Improvement

Current Systems Rely on Manually Designed Strategies



Lesson 1: Automated Approaches Offer 3-10x Improvement

FlexFlow: Automatically Optimizing DNN Parallelization



Better Performance

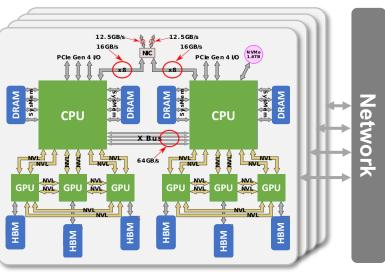
Up to 10x faster than manually designed strategies

Fast Deployment

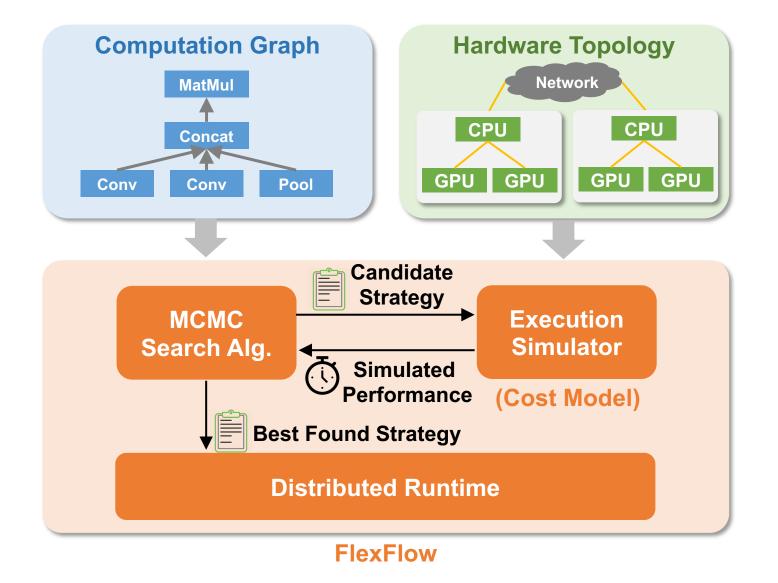
Minutes of automated search to discover performant strategies

No Manual Effort

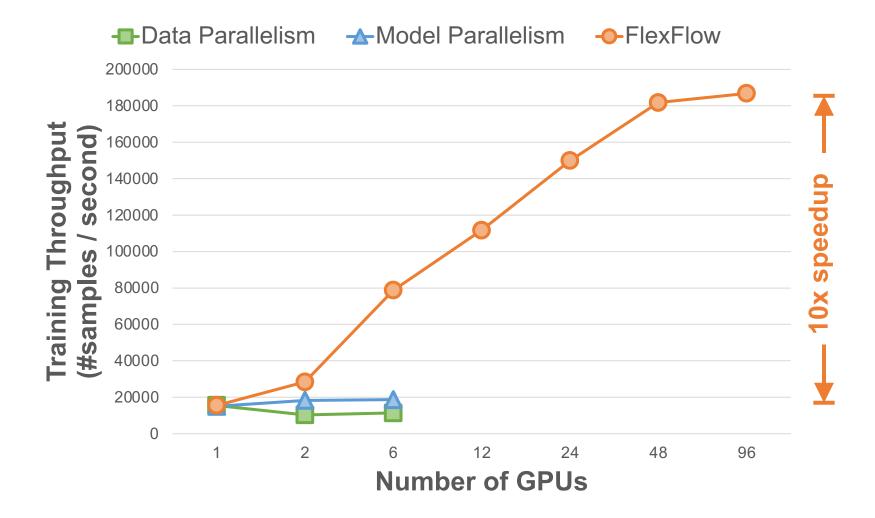
Automatically find strategies for new DNN models or hardware platforms



FlexFlow Overview

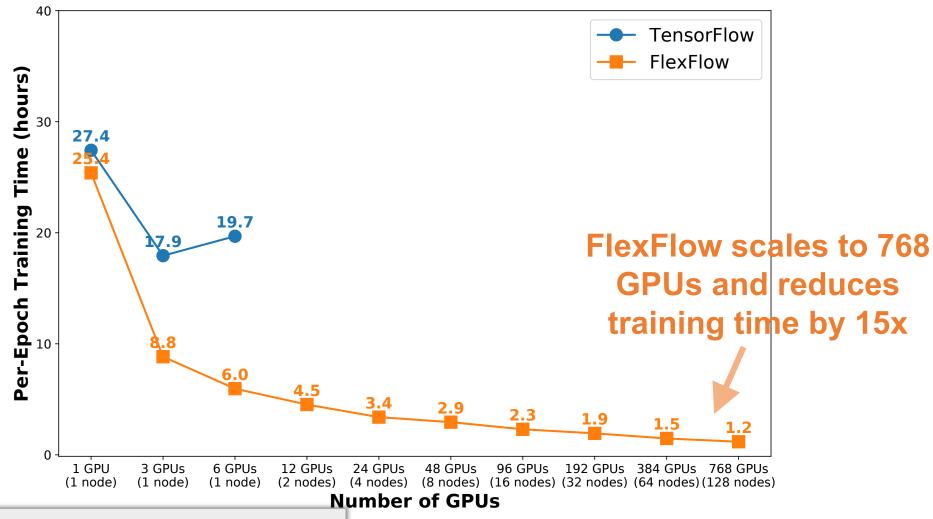


Deep Learning Recommendation Model (DLRM) **facebook** A deep learning model for ads recommendation



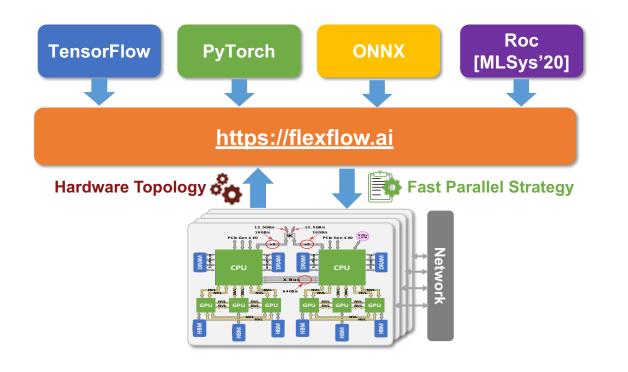
ECP-CANDLE Training Performance

A deep learning model for precision medicine



Lesson 1: Automated Approaches Offer 3-10x Improvement

FlexFlow: Automatically Discovering Fast and Scalable DNN Parallelization Strategies



https://flexflow.ai



Performance Autotuning

FlexFlow accelerates DNN training by automatically discovering fast parallelization strategies for a specific parallel machine.

Learn more

FlexFlow provides a drop-in replacement for TensorFlow Keras and requires only a few lines of

Keras Support

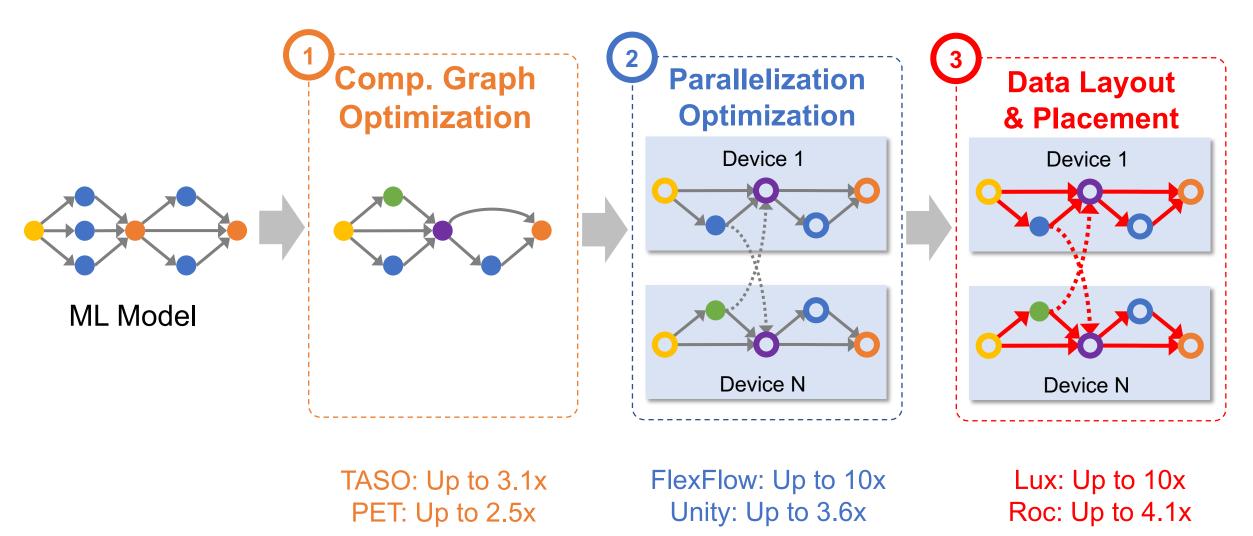
changes to existing Keras programs.

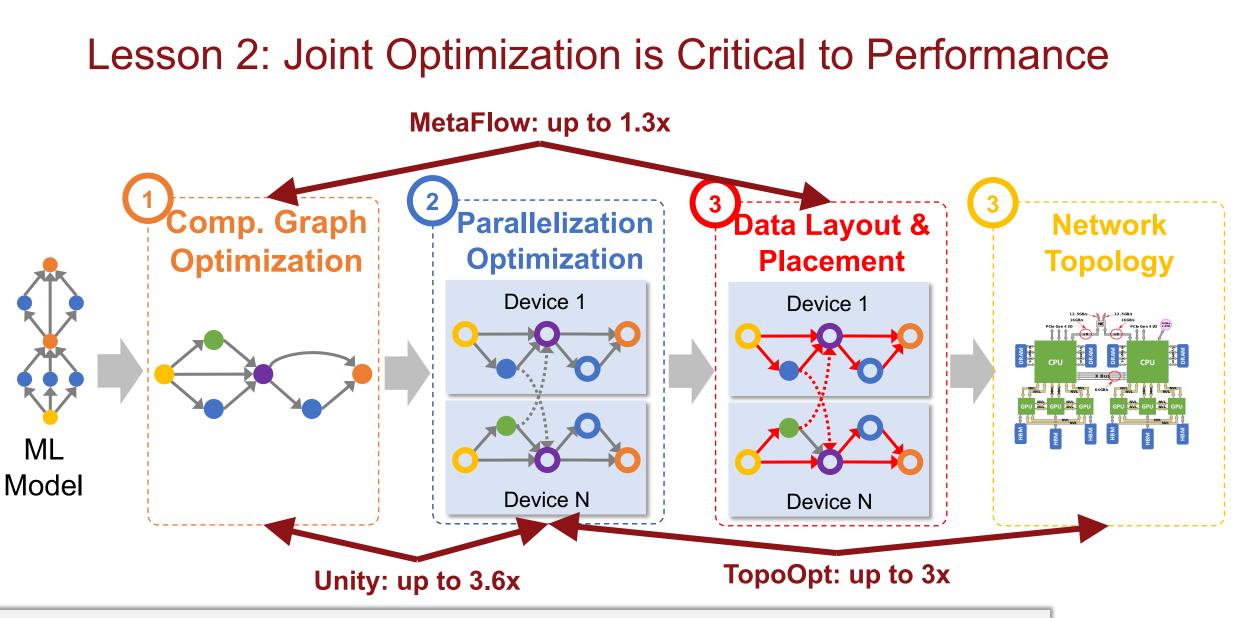
Large-Scale GNNs

FlexFlow enables fast graph neural network training and inference on large-scale graphs by exploring attribute parallelism.

Learn more

Lesson 1: Automated Approaches Offer 3-10x Improvement

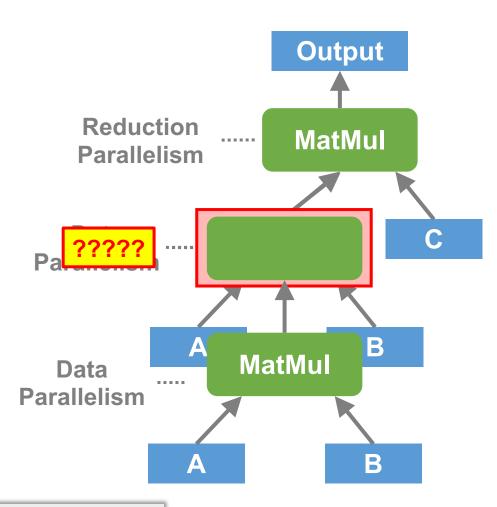


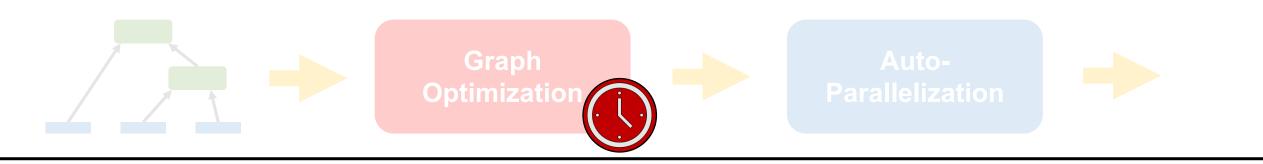


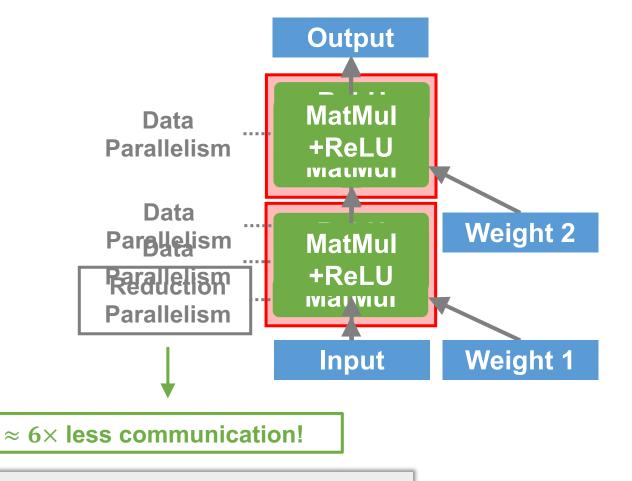
1. Unity: Accelerating DNN Training Through Joint Optimization of Algebraic Transformations and Parallelization. OSDI'22.

2. TopoOpt: Optimizing the Network Topology for Distributed DNN Training. NSDI'23.

3. MetaFlow: Optimizing DNN Computation with Relaxed Graph Substitutions. MLSys'19

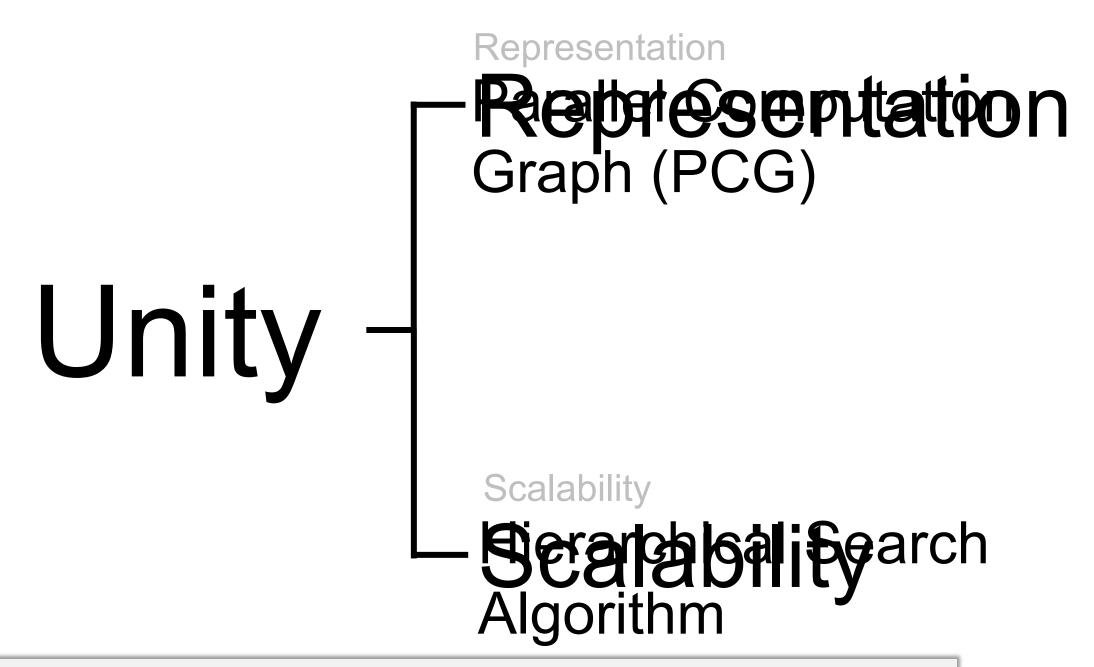




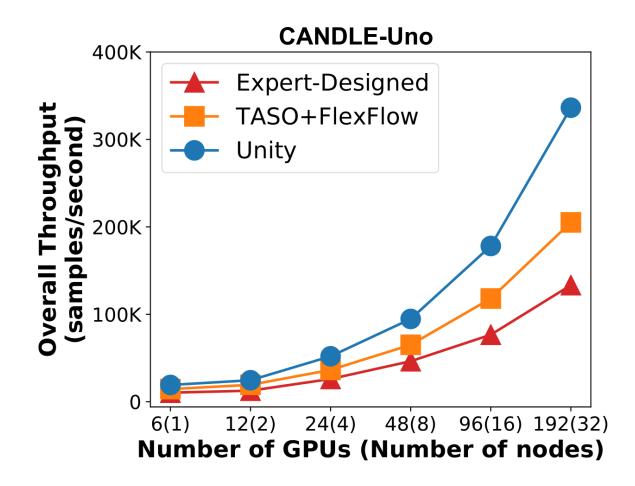


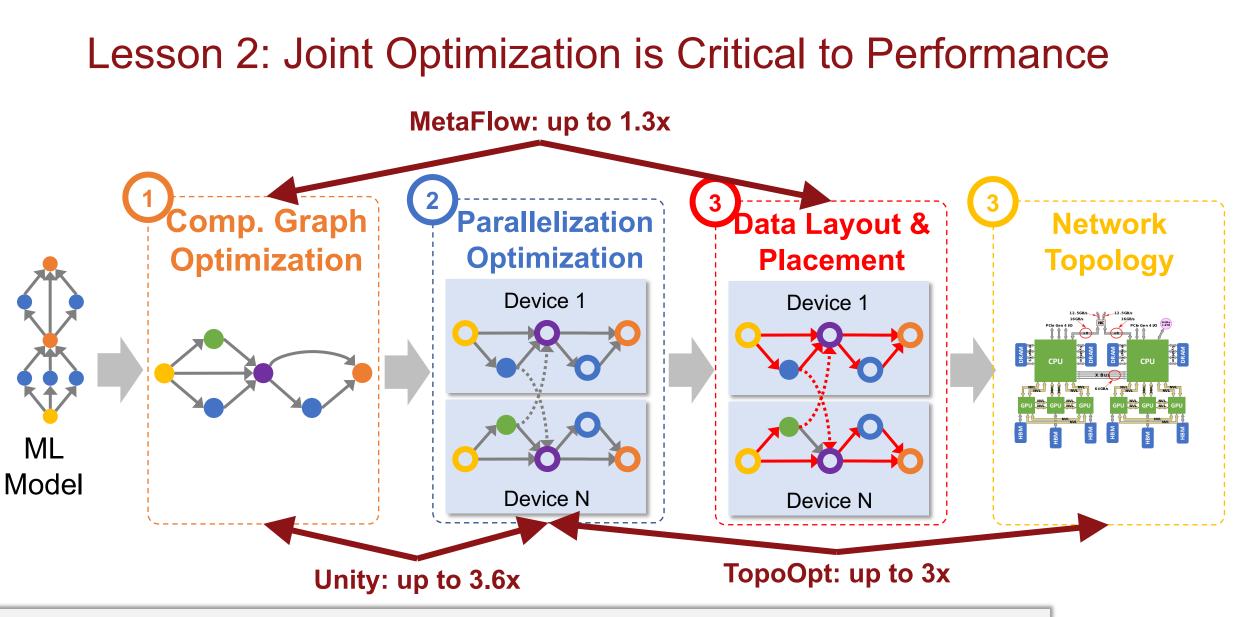
1. Representation

2. Scalability



Joint Optimization Enables Better Performance and Scalability





1. Unity: Accelerating DNN Training Through Joint Optimization of Algebraic Transformations and Parallelization. OSDI'22.

2. TopoOpt: Optimizing the Network Topology for Distributed DNN Training. NSDI'23.

3. MetaFlow: Optimizing DNN Computation with Relaxed Graph Substitutions. MLSys'19

Lesson 3: Combining ML and Systems Optimizations is Promising but Challenging

Systems Optimizations

- Graph Transformations
- Auto Parallelization
- Kernel Generation
- Data Layout and Placement

Quantization
Pruning
Distillation
Neural Architecture Search

Lesson 3: Combining ML and Systems Optimizations is Promising but Challenging

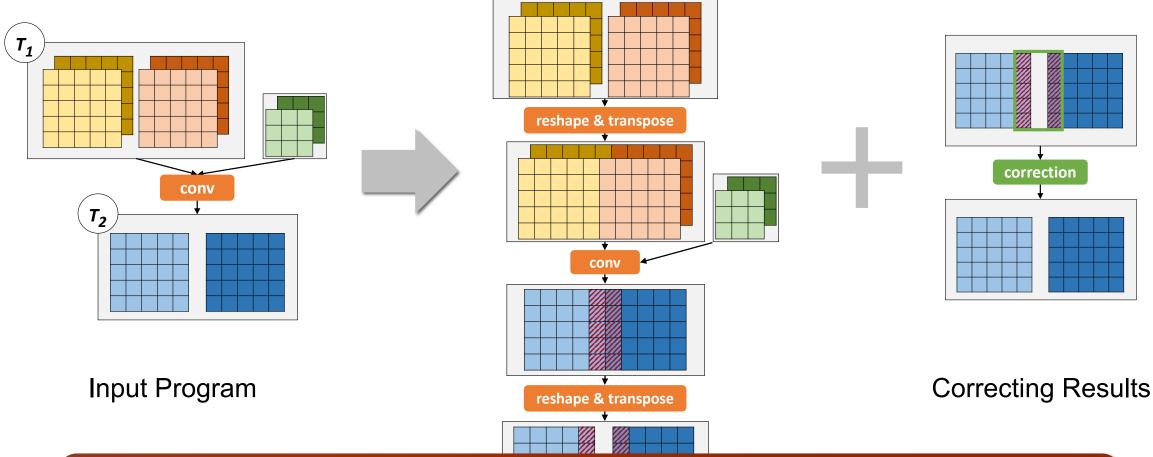
Systems Optimizations

Pro: preserve functionality

- Pro: better performance
 - Faster ML operators
 - Less Computation

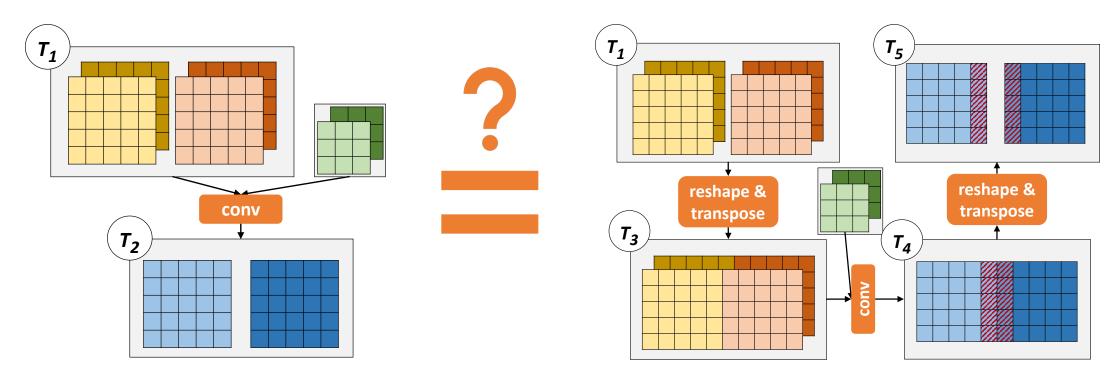
Achieve the best of both worlds?

Hidden Treasure: Partially Equivalent Transformations



- Transformation and correction lead to <u>1.2x</u> speedup for ResNet-18
- Correction preserves end-to-end equivalence

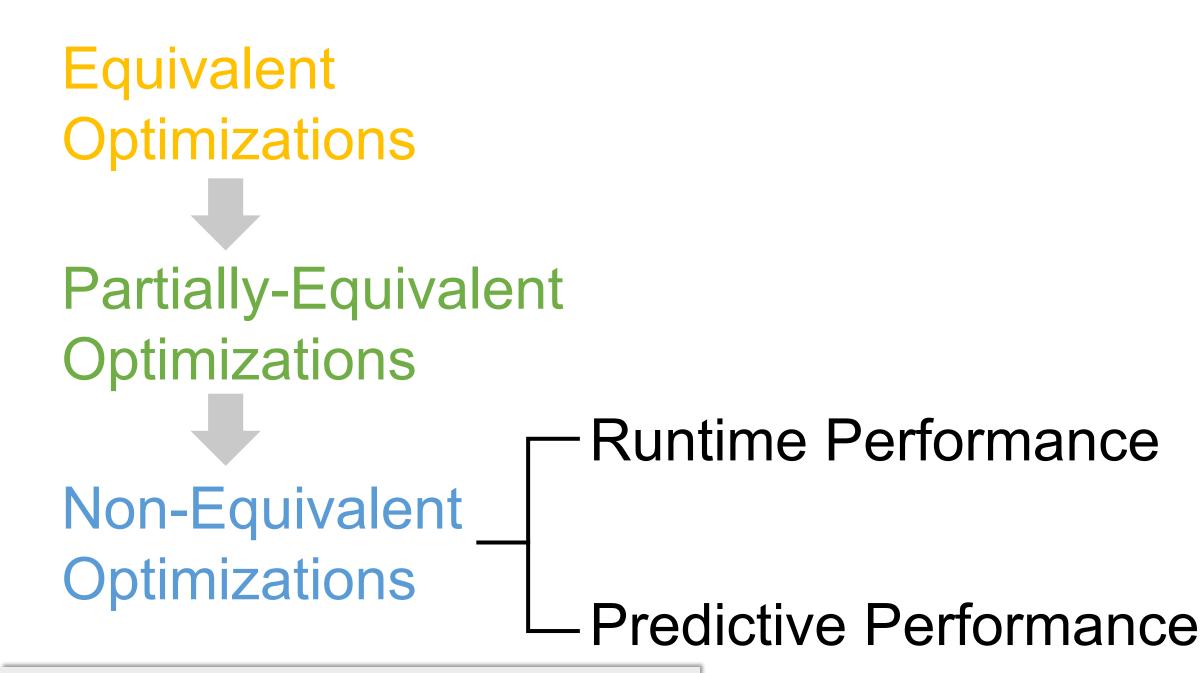
Hidden Treasure: Partially Equivalent Transformations



Which part of the computation is not equivalent? How to correct the results?

PET

- **Tensor program optimizer** with partially equivalent transformations and automated corrections
- Larger optimization space by combining fully and partially equivalent transformations
- Better performance: outperform existing optimizers by up to 2.5x
- Correctness: automated corrections to preserve end-to-end equivalence



Lesson 3: ML and Systems Optimizations is Promising but Challenging

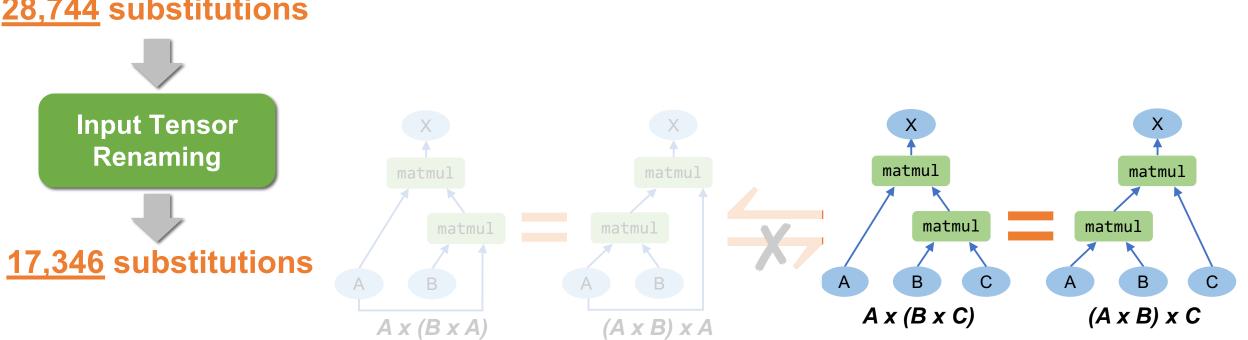
catalyst

1. Automated approaches can offer 3-10x improvement on most tasks

2. Joint optimization is critical

3. Combing systems and ML optimizations is promising but challenging

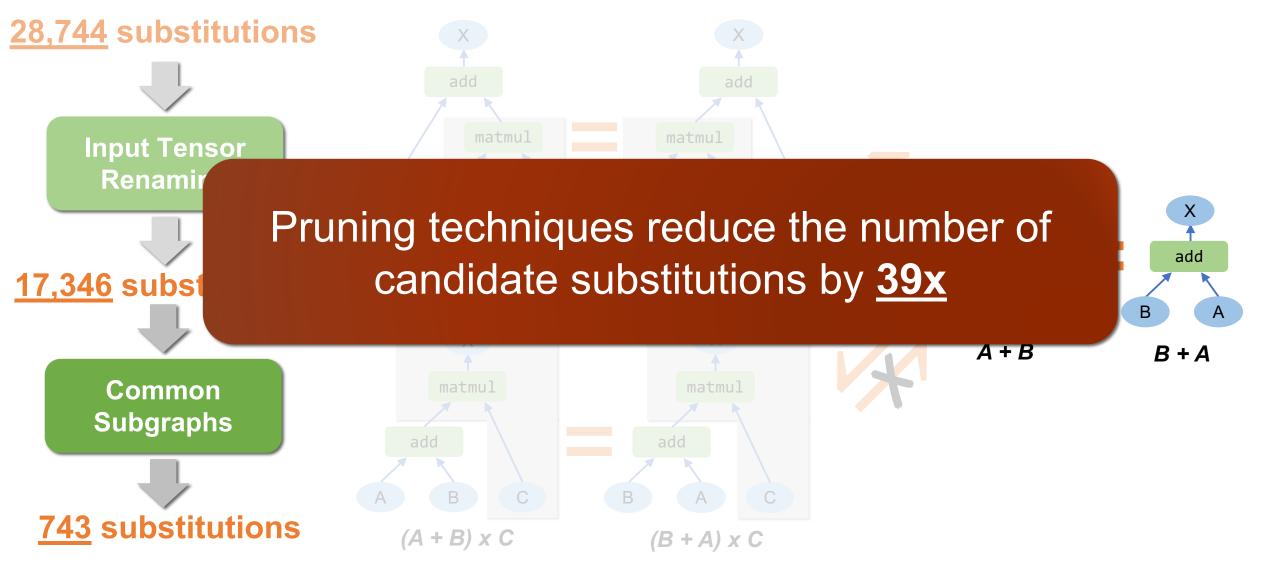
https://catalyst.cs.cmu.edu/



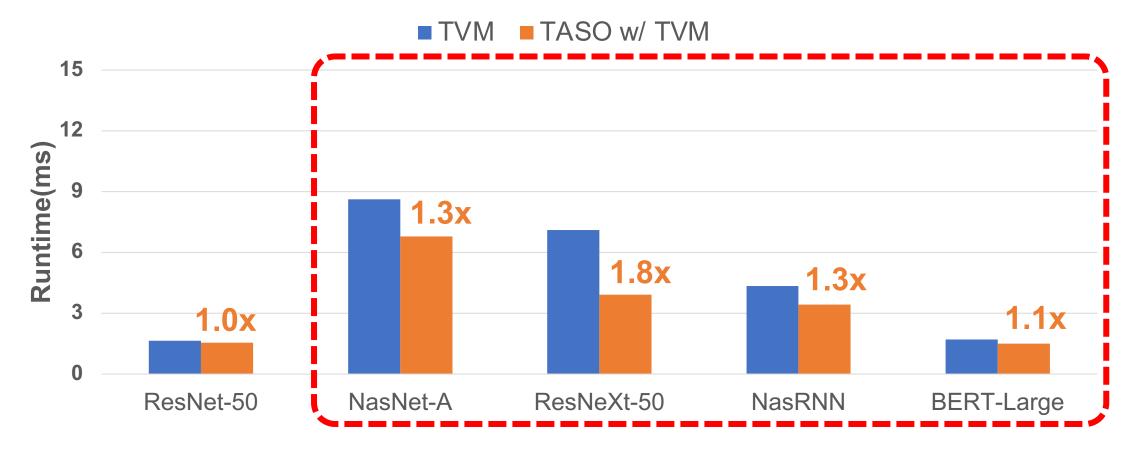
Pruning Redundant Substitutions

28,744 substitutions

Pruning Redundant Substitutions

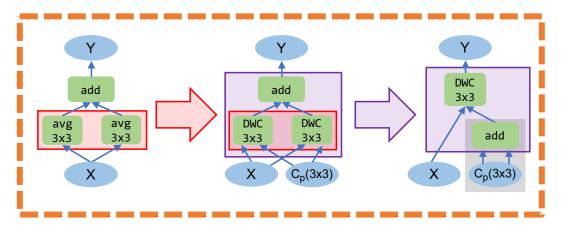


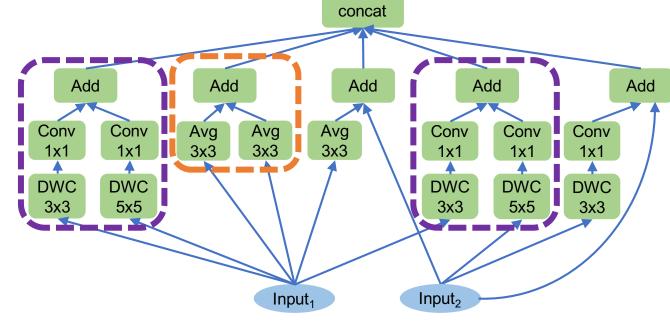
End-to-end Inference Performance (TVM)



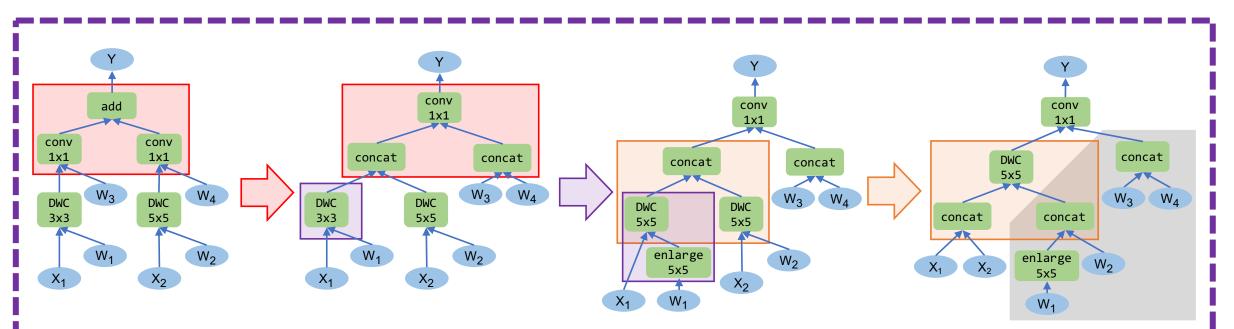
Larger speedups on emerging models

Case Study: NASNet





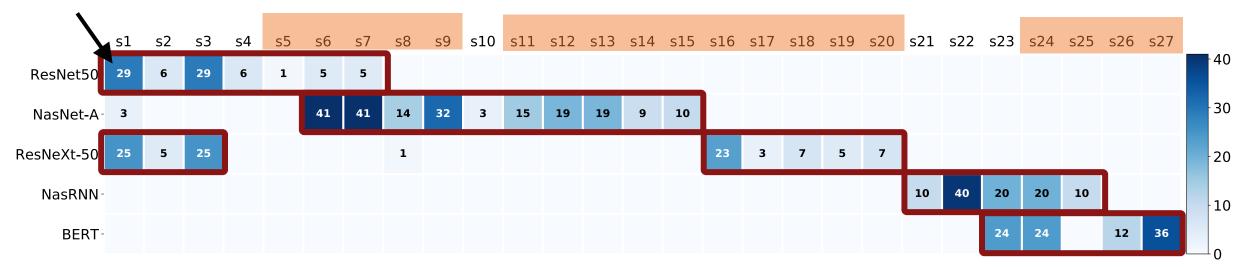
*DWC: depth-wise convolution



Heatmap of Used Substitutions

Not covered in TensorFlow

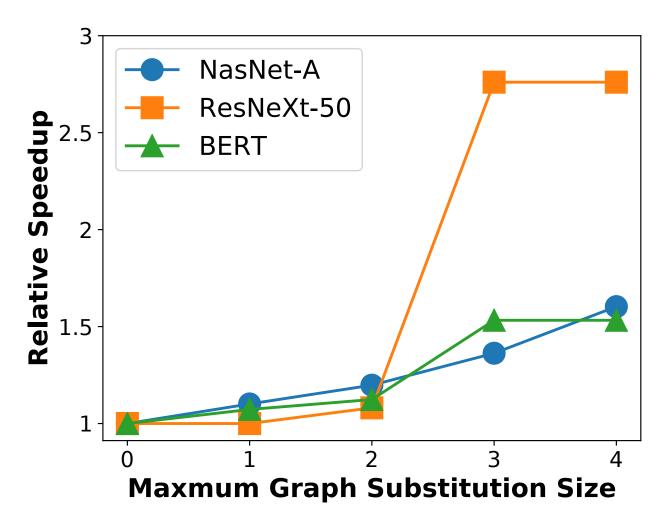
How many times a subst. is used to optimize a DNN



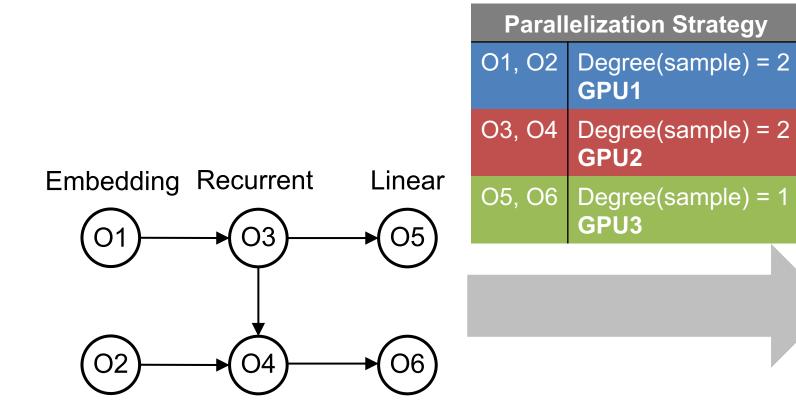
Different DNN models require different substitutions.

Scalability Analysis

Max Num. of Operators	Mem. to Cache Fingerprints
1	0.9 KB
2	35.8 KB
3	6.9 MB
4	5.35 GB

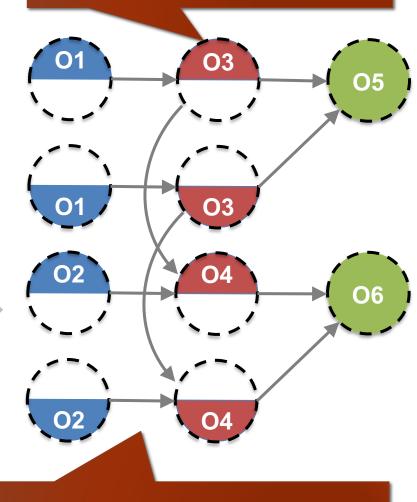


Execution Simulator



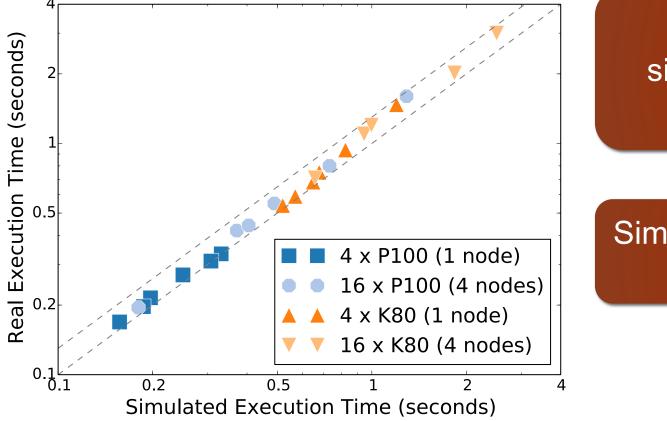
ML Architecture

Task run time ≈ measurements on operators



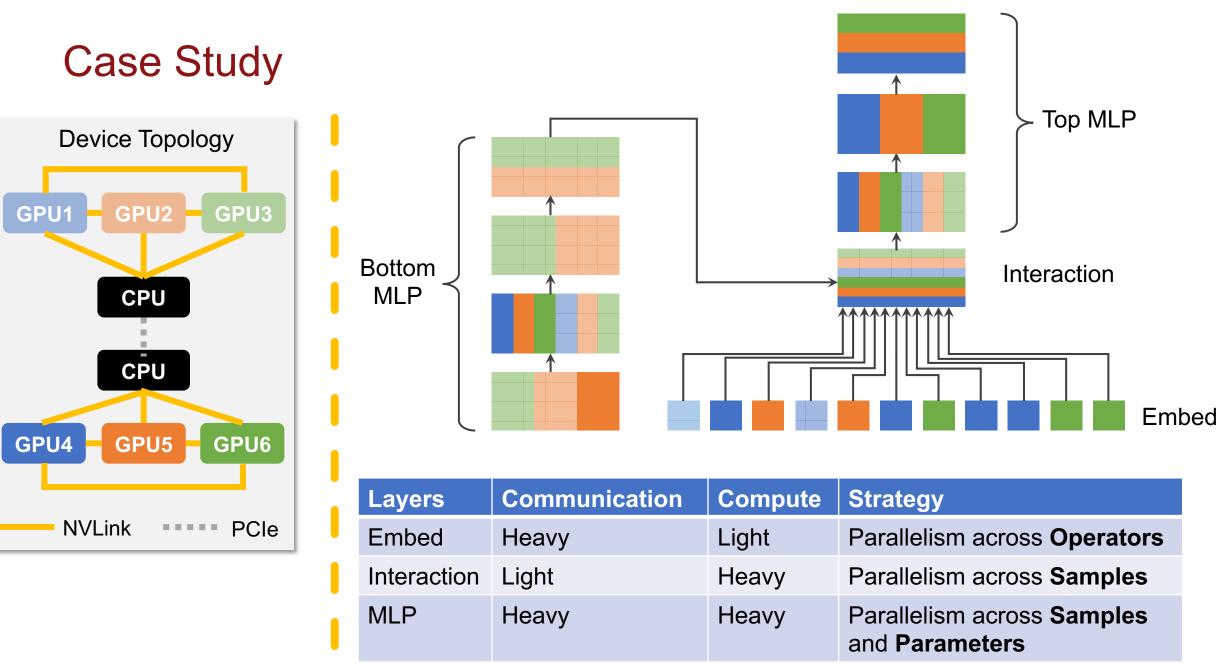
Data transfer time ≈ tensor size / channel bandwidth

Execution Simulator



Relative difference between simulated and actual execution time is less than 30%

Simulated execution time preserves real execution time ordering



FlexFlow Impact

facebook

Facebook uses FlexFlow to train production ML models. Increase training throughput by <u>10x</u>.

Used by LANL to train ML models for precision medicine. Reduce training time from <u>days</u> to <u>hours</u>.

Improve the <u>accuracy</u>, <u>scalability</u>, and <u>performance</u> of graph neural networks.