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My Research: Systems for ML
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Challenges of Building ML Systems
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CMU Automated Learning Systems Lab

Mission: Automate the design and optimization of ML systems by leveraging
1. Statistical and mathematical properties of ML algorithms
2. Domain knowledge of modern hardware platforms

4https://catalyst.cs.cmu.edu/
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Our Research: Automated Discovery of ML Optimizations
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FlexFlow [MLSys’19]
Unity [OSDI’22]

Automated discovery of fast 
parallelization strategies

Lux [VLDB’18]
Roc [MLSys’20]

Automated data layout and 
placement optimizations

TASO [SOSP’19]
PET [OSDI’21]

Automated generation of 
graph optimizations
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Lesson 1: Automated Approaches Offer 3-10x Improvement
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Advantages of Automated Approaches

• Better runtime performance: discovering novel optimizations hard to 
manually designed, 3-10x speedup over manual optimizations

• Less engineering effort: code for discovering optimizations is generally 
much less than manual implementation of these optimizations

• Stronger correctness guarantees: using formal verification techniques

7Lesson 1: Automated Approaches Offer 3-10x Improvement
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Lesson 1: Automated Approaches Offer 3-10x Improvement

Current Rule-based Graph Optimizations
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Lesson 1: Automated Approaches Offer 3-10x Improvement 10

Fuse conv + relu

Fuse conv + 
batch normalization

Fuse multi. convs

…

Current Rule-based Graph Optimizations

Rule-based Optimizer

TensorFlow currently 
includes ~200 rules 

(~53,000 LOC)
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Infeasible to Manually Design Graph Optimizations
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Lesson 1: Automated Approaches Offer 3-10x Improvement
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TASO: Tensor Algebra SuperOptimizer

Key idea: replace manually-designed graph optimizations with automated 
generation and verification of graph substitutions for tensor algebra

• Less engineering effort: 53,000 LOC for manual graph optimizations in 
TensorFlow → 1,400 LOC in TASO

• Better performance: outperform existing optimizers by up to 3x
• Stronger correctness: formally verify all generated substitutions

12Lesson 1: Automated Approaches Offer 3-10x Improvement
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TASO Workflow
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TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.
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End-to-end Inference Performance (Nvidia V100 GPU)
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Competitive on 
standard models

Larger speedups on
emerging models
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TASO

First DNN graph optimizer that automatically generates substitutions
• Less engineering effort
• Better runtime performance
• Stronger correctness guarantee
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1. PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. OSDI’21.
2. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.
3. Optimizing DNN Computation with Relaxed Graph Substitutions. MLSys’19.
4. Exploring Hidden Dimensions in Parallelizing Convolutional Neural Networks. ICML’18. 
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Our Research: Automated Discovery of ML Optimizations
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FlexFlow [MLSys’19]
Unity [OSDI’22]

Automated discovery of fast 
parallelization strategies

Lesson 1: Automated Approaches Offer 3-10x Improvement
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Challenges of Parallelizing DNN Training
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Need to simultaneously consider:
• Computation cost
• Communication overhead
• Resource usage
• Task scheduling

Lesson 1: Automated Approaches Offer 3-10x Improvement
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Current Systems Rely on Manually Designed Strategies
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Parallelization 
Strategy

Limitations:
- Hard to manually design
- Suboptimal performance
- Limited portability

Lesson 1: Automated Approaches Offer 3-10x Improvement
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Hardware 
Topology

FlexFlow: Automatically Optimizing DNN Parallelization
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manually designed strategies  

No Manual Effort
Automatically find strategies for new 
DNN models or hardware platforms

Fast Deployment
Minutes of automated search to 
discover performant strategies 
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FlexFlow Overview
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Lesson 1: Automated Approaches Offer 3-10x Improvement
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ECP-CANDLE Training Performance
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FlexFlow scales to 768 
GPUs and reduces 
training time by 15x 

A deep learning model for precision medicine

Lesson 1: Automated Approaches Offer 3-10x Improvement
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FlexFlow: Automatically Discovering Fast and Scalable 
DNN Parallelization Strategies
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https://flexflow.ai

TensorFlow PyTorch ONNX Roc 
[MLSys’20]
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Lesson 1: Automated Approaches Offer 3-10x Improvement
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Lesson 2: Joint Optimization is Critical to Performance
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Auto-
Parallelization

Graph 
Optimization

?
26Lesson 2: Joint Optimization is Critical to Performance
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Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University
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≈ 𝟔× less communication!

28Lesson 2: Joint Optimization is Critical to Performance



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University
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Unity

Representation
Representation
Parallel Computation 
Graph (PCG)

Hierarchical Search 
Algorithm
Scalability
Scalability

30Unity: Accelerating DNN Training Through Joint Optimization of Algebraic Transformations and Parallelization. OSDI’22
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Joint Optimization Enables Better Performance and 
Scalability

31

CANDLE-Uno

Lesson 2: Joint Optimization is Critical to Performance
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Lesson 3: Combining ML and Systems Optimizations is 
Promising but Challenging

• Graph Transformations
• Auto Parallelization
• Kernel Generation
• Data Layout and Placement

• Quantization
• Pruning
• Distillation
• Neural Architecture Search

33
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Lesson 3: Combining ML and Systems Optimizations is 
Promising but Challenging
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Systems 
Optimizations

ML
Optimizations

Pro: preserve functionality

Con: miss advanced optimizations

Pro: better performance
• Faster ML operators
• Less Computation
Con: potential accuracy loss

Achieve the best of both worlds?
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PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. OSDI’21

Hidden Treasure: Partially Equivalent Transformations

35
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Input Program Correcting Results

Incorrect results

• Transformation and correction lead to 1.2x speedup for ResNet-18
• Correction preserves end-to-end equivalence
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Hidden Treasure: Partially Equivalent Transformations
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1. Which part of the computation is not equivalent?
2. How to correct the results?

PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. OSDI’21
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PET

• Tensor program optimizer with partially equivalent transformations and 
automated corrections

• Larger optimization space by combining fully and partially equivalent 
transformations

• Better performance: outperform existing optimizers by up to 2.5x
• Correctness: automated corrections to preserve end-to-end equivalence

37PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. OSDI’21
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Equivalent 
Optimizations

Partially-Equivalent
Optimizations

Non-Equivalent
Optimizations

Runtime Performance

Predictive Performance
Lesson 3: ML and Systems Optimizations is Promising but Challenging 
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Three Lessons

1. Automated approaches can offer 3-10x
improvement on most tasks

2. Joint optimization is critical

3. Combing systems and ML optimizations is 
promising but challenging

39https://catalyst.cs.cmu.edu/
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Pruning Redundant Substitutions

40
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⇋✘

⇋✘

Pruning Redundant Substitutions
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Pruning techniques reduce the number of 
candidate substitutions by 39x
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End-to-end Inference Performance (TVM)
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Larger speedups on emerging models
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Case Study: NASNet
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Heatmap of Used Substitutions

44

Different DNN models require different substitutions.

Not covered in 
TensorFlow

How many times a subst. is 
used to optimize a DNN
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Scalability Analysis
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of Operators
Mem. to Cache 

Fingerprints
1 0.9 KB
2 35.8 KB
3 6.9 MB
4 5.35 GB
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O1

O1

O2

O2

O3

O3

O4

O4

O5

O6

Parallelization Strategy
O1, O2 Degree(sample) = 2

GPU1
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GPU2
O5, O6 Degree(sample) = 1

GPU3

Execution Simulator

Data transfer time ≈ 
tensor size / channel bandwidth
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Embedding Recurrent Linear

ML Architecture

Task run time ≈ 
measurements on operators
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Relative difference between 
simulated and actual execution 

time is less than 30%

Simulated execution time preserves 
real execution time ordering

Execution Simulator
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Case Study
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FlexFlow Impact

Facebook uses FlexFlow to train production ML 
models. Increase training throughput by 10x.

Used by LANL to train ML models for precision 
medicine. Reduce training time from days to hours.

Improve the accuracy, scalability, and performance
of graph neural networks.
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