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Outline
● Introduction to the TPU Family (~5 minutes)
● 10 lessons learned and how they shaped TPUs (~25 minutes)
● Dire projections of carbon emissions of ML (~5 minutes)

○ Preview: Some papers overestimate emissions by 100x to 100,000x

● “4Ms” of energy efficiency: Model, Machine, Mechanization, Map (~5 minutes)
○ Preview: Optimizing 4Ms can reduce energy consumption up to 100x, emissions up to 1000x
○ Preview: ML is ~75% of Google’s FLOPs but < 15% of total energy

● Conclusion and Recommendations (~5 minutes)
● Acknowledgements
● Q&A
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Introduction to the TPU Family
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TPU Origin Story
● 2013: Prepare for success-disaster of new DNN apps

○ Scenario with 100M users speaking to phones 3 minutes per day:
If only CPUs, double whole data center fleet!

● Goal: Custom Domain Specific Architecture (DSA) to reduce the Total Cost of 
Ownership (TCO) of DNN inference phase by 10X 
○ Training “learns” parameters; Inference uses the trained model in production
○ Must run existing apps developed for CPUs and GPUs

● Very short development cycle 
○ Started TPUv1 project 2014
○ Running in datacenter 15 months later: architecture invention, compiler invention, 

hardware design, build, test, and deploy
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TPU v1 vs CPU & GPU: Performance/Watt 
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~80X perf/Watt of Haswell CPU
~30X perf/Watt of K80 GPU

Jouppi, Norman P., Cliff Young, Nishant Patil, David Patterson, et al. In-datacenter 
performance analysis of a tensor processing unit, ISCA, 2017.

https://arxiv.org/abs/1704.04760
https://arxiv.org/abs/1704.04760


May 18, 2016 Google Announcement
“We’ve been running TPUs inside our 
data centers for more than a year, and 
have found them to deliver an 
order of magnitude better-optimized 
performance per watt for ML.” 

Google CEO Sundar Pichai
cloudplatform.googleblog.com/2016/05/Google-superc
harges-machine-learning-tasks-with-custom-chip.html

See timecode 1:48:31 in the Google I/O keynote 
video (May 18, 2016): 
https://www.youtube.com/watch?v=862r3XS2YB0

https://cloud.google.com/blog/products/ai-machine-learning/google-supercharges-machine-learning-tasks-with-custom-chip
https://cloud.google.com/blog/products/ai-machine-learning/google-supercharges-machine-learning-tasks-with-custom-chip
https://www.youtube.com/watch?v=862r3XS2YB0
http://www.youtube.com/watch?v=862r3XS2YB0&t=6511


The Launching of “1000 Chips”
● Intel acquires DSA chip companies

● Nervana:    ($0.4B)  August 2016
● Movidius:    ($0.4B) September 2016
● MobilEye: ($15.3B)  March 2017
● Habana:      ($2.0B)  December 2019

● Alibaba, Amazon build inference chips
● >100 startups ($3B/yr) launch own bets

● Coarse-Grained Reconfigurable Arch: SambaNova, ...
● Analog computing: Mythic, …
● Full silicon wafer computer: Cerebras

● Most influential processors since RISC?
7Helen of Troy by Evelyn De Morgan

https://en.wikipedia.org/wiki/Helen_of_Troy_(painting)
https://en.wikipedia.org/wiki/Evelyn_De_Morgan


TPUv4 Announced at Google I/O by Sundar

● May 18, 2021
● 4096 TPUv4 chips provide 

an exaflop in Bfloat16
● TPUv4i was deployed a year 

earlier for inference

8See timecode 25:51 in the Google I/O keynote video: https://bit.ly/3fDW7xq

http://www.youtube.com/watch?v=Mlk888FiI8A&t=1565
https://bit.ly/3fDW7xq


TPU Generations
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Year Inference
Training 

& 
Inference

Peak Chip 
Performance TDP Tech. 

Node
Chips/
Pod

Peak Pod
Performance**

2015 TPUv1 92     TOPs/s 75 W 28 nm - - - -

2017 TPUv2 46 TFLOPs/s 280 W 16 nm 256 11 PetaFLOPs/s

2018 TPUv3 123 TFLOPs/s 450 W 16 nm 1024 125 PetaFLOPs/s

2020 TPUv4i
(TPUv4 lite) 138 TFLOPs/s 175 W 7 nm - - - -

2021 TPUv4 ≥250* TFLOPs/s  - - - - 4096 ≥1 ExaFLOPs/s

* 1 ExaFLOPs/sec ÷ 4096 TPU v4 chips

Jouppi et al., Ten Lessons From Three Generations Shaped Google’s TPUv4i, ISCA, 2021 

** Bfloat16 FLOPS

http://www.markgottscho.com/papers/2021_NJouppi_ISCA.pdf
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Ten Lessons and how they shaped 
TPUs
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10 Lessons Learned Over ~10 Years

1. DNNs grow rapidly in memory and compute
2. DNN workloads evolve with DNN breakthroughs
3. Can optimize DNN as well as compiler and hardware
4. Inference SLO limit is P99 latency, not batch size
5. Production inference normally needs multi-tenancy
6. It’s the memory, stupid (not the FLOPs)
7. DSA Challenge: Optimize for domain while being flexible
8. Logic, Wires, SRAM, & DRAM improve unequally
9. Maintain compiler optimizations and ML compatibility

10. Design for performance per TCO vs perf per CapEx

DNN Models  

Hardware/Architecture
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● For inference production DNNs, accelerators need headroom for growth in memory 
footprint and FLOPS over lifetime of deployment
○ ~1.5X per year in memory & FLOPs

● 1+ year design, 1+ year deployment, 3+ year service
○ 1.55 = ~8X!

Model Annual Memory Increase Annual FLOPS Increase

CNN1 0.97 1.46
CNN0 1.63 1.63
MLP0 2.16 2.16
MLP1 1.26 1.26

Lesson 1: DNN Model Growth 
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● New models getting even 
larger

● 2012-19, ML training 
compute SOTA 10X/year!

● GPT-3 “breakthrough”
is simply 100X bigger:
GPT-2 ⇒ GPT-3 
  1.5B ⇒175B parameters

From “AI and Compute.” Dario Amodei and Danny Hernandez, May 16, 2018
https://openai.com/blog/ai-and-compute/

ML Training

14

Lesson 1: DNN Model Growth 

https://openai.com/blog/ai-and-compute/


DNN Name 2020 2016
MLP0

25% 61%
MLP1
CNN0

18% 5%
CNN1
LSTM0

0% 29%
LSTM1
RNN0

29% 0%
RNN1
BERT0

28% 0%
BERT1
TOTAL 100% 95%

● Google DNN workloads 2016 vs 2020
● Past benchmarks still important (MLP, CNN) 
● RNNs replaced LSTMs
● Added BERT models 

○ Some apps switched from MLP to BERT
○ MLPerf 0.7 inference also added BERT 
○ BERT published 2018!

● DSA needs to be general enough to handle new 
models

Lesson 2: DNN Workloads Evolve with DNN Breakthroughs 
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Lesson 3: Can optimize DNN as well as compiler and hardware

● OK to change DNN as well as compiler and hardware to improve performance as 
long as maintain or improve DNN quality

○ Unlike CPUs where benchmark code is sacrosanct

● DNNs easier since 100s or 1000s of lines of TensorFlow code
○ Unlike CPUs where benchmarks can be 100,000s of lines of C++ code

● Platform-aware AutoML* uses Neural Architecture  Search (NAS) to 
Pareto-optimize ML model performance and quality on ML accelerators

○ Searches a space of more than O(2300) candidates
● Discovered DNN is 1.6X performance at comparable quality for CNN1 
● Using ML to improve ML performance!

16

* Li, S., Tan, M., Pang, R., Li, A., Cheng, L., Le, Q.V. and Jouppi, N.P., 2021. Searching for Fast Model Families on 
Datacenter Accelerators. Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition

https://arxiv.org/abs/2102.05610
https://arxiv.org/abs/2102.05610


Type Model Latency Constraint Batch Size

MLPerf
Resnet50 15 ms 16
SSD 100 ms 4
GNMT 250 ms 16

Production

MLP0 7 ms 512
MLP1 20 ms 128
CNN0 10 ms 16
CNN1 32 ms 16
RNN0 60 ms 8
RNN1 10 ms 32
BERT0 5 ms 128
BERT1 10 ms 64

• Some accelerators claim batch size must be 1 to keep latency low. In reality:

Lesson 4: Inference SLO Limit is Latency, Not Batch Size

17

• Google’s production workloads have ~9X larger batch size despite ~7X stricter latency 
limit than MLPerf



● Many inferencing applications need to support multiple models
○ Want near zero switching time between models (e.g., <100 μs)

● Examples:
○ Translate - many different language pairs and models
○ Development - Main model plus experimental models 
○ Multiple batch sizes to balance throughput and latency

Lesson 5: Production Inference Needs Multi-tenancy

18
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Multi- 
tenancy?

Avg # Programs 
(StdDev), Range

MLP0 Yes 27 (±17), 1-93
MLP1 Yes 5 (±0.3), 1-5

CNN0 No 1

CNN1 Yes 6 (10), 1-34

RNN0 Yes 13 (±3), 1-29

RNN1 No 1

BERT0 Yes 9 (±2), 1-14
BERT1 Yes 5 (±0.3), 1-5

Largest on 
chip SRAM
(~300 MB)

Lesson 5: DNN Tenancy and Size (Feb 2020) 

● 10s of ms context switching if reloading parameters from CPU host
● Need to fast DRAM to swap multiple models
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● Energy limits modern chips, 
not number of transistors

● External memory access energy 
~100X on chip memory access 
~ 10,000X arithmetic operation

● Easy to scale up FLOPs/sec by 
adding many ALUs to balance 
energy of memory accesses
○ Also why DNN model developers 

should focus on reducing memory 
accesses versus reducing FLOPs 

20

Jouppi, N., Yoon, D-H, Jablin, T., Kurian, G., Laudon, J., Li, S., Ma, P., 
Ma, X., Patil, N., Prasad, S., Young, C., Zhou, Z., and Patterson, D., 
2021. Ten Lessons From Three Generations Shaped Google’s TPUv4i, 
In Proc. 48th International Symposium on Computer Architecture.

6,200x

43,300x

95x

3,400x

3,500x
Lesson 6: It’s the memory, stupid! (not the FLOPs)

https://ieeexplore.ieee.org/document/9499913


Matrix
Multiply

Unit

Activation
Storage

Activation
Pipeline

Accumula
tors

DDR3
PCIe
Que 
ues● 4 MiB of on-chip Accumulator 

memory

● The Matrix Unit: 65,536 (256x256) 
8-bit multiply-accumulate units
○ >25X as many MACs vs GPU
○ >400X as many MACs vs CPU

● 700 MHz clock rate
● Peak: 92T operations/second 

○ 65,536 * 2 * 700M

● 24 MiB of on-chip Activation 
Storage
○ 3.5X on-chip memory vs GPU

● Two 2133MHz DDR3 DRAM 
channels for weights (8 GiB)

TPUv1: High-level Chip 
Architecture
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MXU Systolic Arrays: Two-Dimensional Pipelines

Pipeline Systolic Array

22

* Kung, H.T. and Leiserson, C.E., 1979. Systolic arrays (for VLSI). In Sparse Matrix Proceedings 
1978 (Vol. 1, pp. 256-282). Society for Industrial and Applied Mathematics.

● Choreographs data from different 
directions arriving at cells in an array at 
regular intervals and being combined 
for large matrix multiplication

● Original argument was minimize wiring
○ Only 1 metal layer 1970s 

“VLSI has made one thing clear. Simple and 
regular interconnections lead to cheap 
implementations and high densities, and high 
densities implies both high performance and 
lower overhead …” *

● Today’s argument is minimizing energy 
○ ~10 metal layers today 



● TPUv2 for harder problem of Training
○ More Computation: Backprop, transpose, derivatives
○ More Memory: Keep data around for backprop
○ Wider Operands: Need dynamic range (more than int8; invented BFloat16 Fl. Pt.)
○ Harder Parallelization: Scale-up instead of scale-out
○ More Programmability: User experimentation, new optimizers

■ Lesson 2: DNN workloads evolve with DNN breakthroughs
● TPUv1 ⇒ more programmable TPUv2 in 5 Easy Steps
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Lesson 7: DSA Optimize for domain while being flexible
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1 Horowitz 1MB SRAM value is based on a single bank SRAM. Most engineers 
would use multiple banks, which is reason for 7.1x reduction in 1MB SRAM vs 
2.4 for 32 KB SRAM.

2 1300 pJ for DDR3/4 DRAM is only the I/O [Sto12]. HBM2 and GDDR6 also 
list only the I/O energy [Mic17, O’C17, Smi20].

Horowitz M. “Computing's energy problem (and what we can do about it)”. 
IEEE International Solid-State Circuits Conference Digest of Technical 
Papers, 2014.

Operation
Picojoules per Operation

45 nm 7 nm 45 / 7

+

Int 8 0.030 0.007 4.3
Int 32 0.100 0.030 3.3
BFloat 16 -- 0.110 --
IEEE FP 16 0.400 0.160 2.5
IEEE FP 32 0.900 0.380 2.4

✕

Int 8 0.200 0.070 2.9
Int 32 3.100 1.480 2.1
BFloat 16 -- 0.210 --
IEEE FP 16 1.100 0.340 3.2
IEEE FP 32 3.700 1.310 2.8

SRAM
8 KB SRAM 10.000 7.500 1.3
32 KB SRAM 20.000 8.500 2.4
1 MB SRAM 1001.000 141.000 7.1

GeoMean -- -- 2.61

DRAM

Circa 45 nm Circa 7 nm
DDR3/4 1300 130020 1.0
HBM2 -- 250-4502 --
GDDR6 -- 350-4802 --

Logic improves faster than wires and 
SRAM (logic “free”) and HBM faster, 
more energy efficient than DDR4, 
GDDR6

Lesson 8: Unequal changes in semiconductor technology

Jouppi et al., Ten Lessons From Three Generations Shaped Google’s TPUv4i, ISCA, 2021 
38
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Transition TPUv2 ⇒ TPUv3 

● “mid-life kicker” in same technology as TPUv2
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TPUv1 (2015), TPUv2 (2017),TPUv3 (2018)

TPUv2Peak: 11 PFLOP/s TPUv3 Peak: 100 PFLOP/s
47



Easier to Scale FLOPs/sec as Logic improves quickest

48

TPU TPUv1 TPUv2 TPUv3 TPUv4i

MXUs/Core
1 

256x256
1 

128x128
2 

128x128
4 

128x128

MXUs % Die Area 24%   8% 11% 11%

Die Area (mm2) < 330 < 625 < 700 < 400

Technology (nm) 28 16 16 7

Jouppi et al., Ten Lessons From Three Generations Shaped Google’s TPUv4i, ISCA, 2021 

http://www.markgottscho.com/papers/2021_NJouppi_ISCA.pdf


TPUv4i System (2020)

● 4 MXUs per core
● Bigger on-chip memory (“CMEM”)

○ 32 MB ⇒ 144 MB

● And many other features
○ Clock 10% faster than TPUv3
○ MXU: 4-input adders saved 

40% area and 25% power 
○ Lots of counters to help 

compiler, app tune performance
○ 4D DMA
○ Custom on-chip interconnect 
○ VLIW instruction 25% wider

49

Jouppi et al., Ten Lessons From Three Generations 
Shaped Google’s TPUv4i, ISCA, 2021 

http://www.markgottscho.com/papers/2021_NJouppi_ISCA.pdf
http://www.markgottscho.com/papers/2021_NJouppi_ISCA.pdf
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● XLA (accelerated Linear Algebra) compiler does whole-program analysis and 
optimization
○ Divided into HLO ops (machine independent) and LLO ops (machine dependent)
○ HLO optimizations apply to all TPU/GPU/CPU systems, changes at LLO level OK

● XLA exploits huge parallelism represented in a TensorFlow input dataflow graph 
1. Multicore Parallelism: Up to 4096 chips
2. Data Level Parallelism: 2D vector and matrix functional units
3. Instruction Level Parallelism: VLIW instruction set (format 322–400 bits) 

● 2D vector registers, compute units ⇒ good data layout in units & memory
● No caches ⇒ XLA manages all memory transfers
● DSA software stacks less mature than CPU SW stacks; how fast improve?

Lesson 9: Maintain compiler optimizations and ML compatibility
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ResNet50 and CNN1 
model
architectures much 
faster with fusion

(They use “skip 
connections” that 
skip one or more 
layers, helping 
fusion)

● Operator fusion reduces memory needs and can ≥2X performance 
○ e.g., fusing a matrix multiplication with following activation function skips writing 

and reading the intermediate products from HBM

● Speedup due to operator fusion optimization vs no fusion

Lesson 9: Maintain compiler optimizations and ML compatibility



● Compilers take time to mature and produce good quality code
○ Learning curve for new architecture and new DSA apps
○ Speedup MLPerf 0.7 (7/2020) vs. MLPerf 0.5 (11/2018)

Lesson 9: Maintain compiler optimizations and ML compatibility
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● Luiz Barroso: “Train overnight & deploy next day”
● Need identical results in inference and training

○ DNN DSAs need Backwards ML Compatibility, 
not binary compatibility

○ Goal is like x86 from a user perspective:  getting 
the same results (same numerics) and exception 
behavior with predictable performance

● Floating point add is not associative ⇒ order of 
operations can prevent high-level operations (such as 
matmul or convolution) from giving same results

○ Compiler must optimize code ⇒ rearranges code
○ Want same compiler generating code for all 

targets similarly ⇒ similar targets

Training Serving

53

Lesson 9: Maintain compiler optimizations and ML compatibility



● TCO = Total Cost of Ownership
● Capital Expenditure (CapEx): Price (Purchase cost)
● Operation Expenditure (OpEx): Operation cost

○ Electricity, cost of cooling, cost of space, etc.
● 3 to 4 year accounting amortization common:

○ TCO = CapEx + 4 x OpEx
● Chip/board vendors focus on Perf/CapEx
● Google focuses on Perf/TCO on production apps 

○ Accelerator CapEx can be less than 25% of inference TCO
○ The inference application still needs to run on the host

● Focus on perf/TCO can lead to significantly different system design tradeoffs

Lesson 10: Optimize Perf/TCO vs. Perf/CapEx
Example TCO Breakdown
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● TPUv1 had 1 core
● TPUv2, TPUv3 had 2 cores
● Want to improve Perf/TCO of TPUv4
● Decided to split design: 

○ Dual core for training (“TPUv4”)
○ Single core for inference (“TPUv4i”)
○ Also reduced amount of HBM for inference to lower cost

● Much lower TDP: 175W for TPUv4i (450W for TPUv3)
● Also HBM to support more parameters over lifetime of TPUv4i inference chip

○ Lesson 1: DNNs grow rapidly in memory and compute
○ Lesson 5: Production inference normally needs multi-tenancy

TPUv4 vs TPUv4i: Optimize Perf/TCO for the fleet
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Evaluation:  Production Apps Perf/Watt TPUv4i vs TPUv3
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• 4 TPUs + T4 TCO strongly correlated to 
System TDP (R = 0.99)

• R = 0.88 for 15 CPUs, GPUs, TPUs

• Use Perf/W as proxy for TCP

• Ending of Moore’s Law & Dennard 
Scaling, 
faster ⇒ more power & cost

• TCO: electricity & provisioning 
power + Chip Capex 

Lesson 10: Perf/TCO ⇒ Perf/W
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10 Lessons Learned (DNNs and Architecture/Hardware)

1. DNNs grow rapidly in memory and compute
⇒ Each generation: 4X chips/pod, 2X perf/chip, 
     2X HBM capacity

2. DNN workloads evolve with DNN breakthroughs
⇒ Each generation: reduce HW obstacles to 
     help compiler

3. Can optimize DNN as well as compiler and HW
⇒ Use ML to tailor DNN to compiler and HW

4. Inference SLO limit is P99 latency, not batch size
⇒ Batch sizes 4–512 improve performance

5. Inference normally needs multi-tenancy
⇒ HBM memory allows fast  switch to new tenant

6. It’s the memory, stupid (not the FLOPs)
⇒ ~100,000 ALUs amortize memory access energy 

7. DSA Challenge: Optimize for domain while flexible
⇒ Replace dedicated functions with vector unit

8. Logic, Wires, SRAM, & DRAM improve unequally
⇒ 2X MXUs per core per TPU generation

9. Maintain compiler optimizations, ML compatibility
⇒ Similar architecture to TPUv2 versus brand new 
instruction set for TPUv3/v4

10. Design for performance/TCO vs perf/CapEx
⇒ 1 core for inference, 2 cores for training, lots of 
memory capacity
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10 Lessons Learned (DNNs and Architecture/Hardware)

1. DNNs grow rapidly in memory and 
compute⇒ Each generation: 4X chips/pod, 

2X perf/chip, 2X HBM capacity
2. DNN workloads evolve with DNN breakthroughs

⇒ Each generation: reduce HW obstacles to 
     help compiler

3. Can optimize DNN as well as compiler and HW
⇒ Use ML to tailor DNN to compiler and HW

4. Inference SLO limit is P99 latency, not batch size
⇒ Batch sizes 4–512 improve performance

5. Inference normally needs multi-tenancy
⇒ HBM memory allows fast  switch to new tenant

6. It’s the memory, stupid (not the FLOPs)
⇒ ~100,000 ALUs amortize memory access 
energy 

7. DSA Challenge: Optimize for domain while flexible
⇒ Replace dedicated functions with vector unit

8. Logic, Wires, SRAM, & DRAM improve 
unequally
⇒ 2X MXUs per core per TPU generation

9. Maintain compiler optimizations, ML compatibility
⇒ Similar architecture to TPUv2 versus brand new 
instruction set for TPUv3/v4

10. Design for performance/TCO vs perf/CapEx
⇒ 1 core for inference, 2 cores for training, lots of 
memory capacity
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Dire Projections of Carbon Emissions 
for ML Training
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● Environmental cost to improve ML task (2024)?* 
“The answers are grim: Training such a model 
would cost US $100 billion and would produce as 
much carbon emissions as New York City does in a 
month. And if we estimate the computational 
burden of a 1 percent error rate, the results are 
considerably worse.”

Thompson, N.C., et al., October 2021. 
Deep Learning's Diminishing Returns: The Cost of 

Improvement is Becoming Unsustainable, IEEE Spectrum

Malthusian Predictions about ML Training 

* The ML task is object recognition using the Imagenet benchmark 
to reduce the error rate for an ML task* to a 5% from 11.5% today.

● “In fact, by 2026, the training cost of the largest AI 
model predicted by the compute demand trend 
line would cost more than the total U.S. GDP.” 
[$20T]

Lohn, J. and Musser, M., January 2022. 
AI and Compute—How Much Longer Can 

Computing Power Drive Artificial Intelligence Progress? 
Center for Security and Emerging Technology

https://ieeexplore.ieee.org/document/9563954/
https://ieeexplore.ieee.org/document/9563954/
https://cset.georgetown.edu/wp-content/uploads/AI-and-Compute-How-Much-Longer-Can-Computing-Power-Drive-Artificial-Intelligence-Progress.pdf
https://cset.georgetown.edu/wp-content/uploads/AI-and-Compute-How-Much-Longer-Can-Computing-Power-Drive-Artificial-Intelligence-Progress.pdf
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https://xkcd.com/1007/

https://xkcd.com/1007


We studied Operational energy use, not Lifecycle

● Responsible AI is a broad topic; this focus is carbon emissions from ML 
training (matching much of the attention in ML community and public)

● Emissions can be classified as 
○ Operational: energy cost of operating ML hardware including datacenter 

overheads (Scope 2), or
○ Lifecycle: operational + embedded carbon emitted during manufacturing 

of all components, from chips to datacenter buildings (Scope 3) 
● Like prior work we focus on operational emissions

○ Estimating lifecycle emissions is a larger, more difficult, future study 
● Emissions measured as tCO2e = 1000 kg of CO2 equivalent emissions 

○ Includes greenhouse gases like methane
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https://ai.google/responsibilities/responsible-ai-practices/


How to document energy use and CO2e

KWh = Hours to train ✕ Number of Processors  ✕ Average Power per Processor ✕ PUE
 

● Google, Facebook publish quarterly PUE for all regions (e.g., Iowa, Oklahoma )
○ Power Usage Effectiveness: energy overhead “wasted” in datacenter (doesn’t get to 

computers); if overhead is 50%, PUE = 1.5
● ML experts already know Hours to Train and Number of Processors
● Average Power per Processor:  

○ Measure power while running like we did
○ Or reuse our Google average power numbers

■ TPUv2: 228 Watts ± 5% (Transformer, Evolved Transformer, NAS)
■ P100 GPU: 284 Watts ± 10% (Transformer, Evolved Transformer, NAS)
■ TPU v3: 283 Watts ± 10% (T5, Meena, Gshard, Switch Transformer)
■ V100 GPU: 325 Watts ± 2% (GPT-3, Transformer Big)

tCO2e = KWh ✕ tCO2e per KWh

● Ask datacenter operator for tCO2e per KWh
○ Google publishes %carbon free energy per datacenter
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https://www.google.com/about/datacenters/efficiency/
https://cloud.google.com/blog/topics/sustainability/google-releases-carbon-free-energy-percentage-for-2020
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4Ms of Energy Efficiency for ML
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Good News #1: Reduce energy 100X, CO2e 1000X

Energy efficiency in ML can be improved 
by 4 (multiplicative) best practices
“4Ms of ML Energy Efficiency” 

66Thanks to Cliff Young for 4M mnemonic!

1. Model. Transformer (2017) to 
Primer (2021) is 4x

2. Machine. P100 (2017) to 
TPUv4 (2021) is 14x

3. Mechanization (datacenter efficiency). 
PUE from global average to Google 
average is 1.4x

4. Maps (geographic location, energy 
source).  Avg %Carbon Free Energy 
(2017) to Google OK %CFE is 9x (2021)



4Ms for NLP: GLaM (TPUv4, Google Oklahoma datacenter, 
2021) vs GPT-3 (V100 GPU, Microsoft datacenter, 2020)

● 18 months after GPT-3
● GLaM has better accuracy 

for same tasks as GPT-3
● 7X more parameters
● Mixture of experts: 

8% parameters/token
● 3X less time, energy
● 14X less CO2e 

Du, N., et al 2021. GLaM: Efficient Scaling of 
Language Models with Mixture-of-Experts. 
arXiv preprint arXiv:2112.06905.

7X 3X

3X

14X
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https://arxiv.org/abs/2112.06905
https://arxiv.org/abs/2112.06905


Good News #2: ML at Google <15% overall energy
● ML energy use April 2019, 2020, 2021
● Almost all ML training and most inference 

run on TPUs and GPUs 
○ For CPU inference, Google-Wide Profiling 

to measure libraries used for ML inference
● Each year for past 3 years, ML portion of 

Google energy use (research, development, 
production) between 10% and 15%
○ Overall energy use grows annually 

with usage, but ML % is stable
● ⅗ for inference, ⅖ for training/year 
● DNNs were 70%-80% FLOPs yet 10%–15% energy

○ Lesson 6: It’s the memory, stupid (not the FLOPs)
○ Lesson 8: Logic, Wires, SRAM, & DRAM improve unequally
○ CO2e if replaced TPUs with CPUs of equivalent FLOPS? (50X as many?)
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Training

Inference

Non-ML

<6%

<9%

>85%



Climate change is one of our most important challenges

69

● But must get numbers right to ensure work on biggest challenges



[Str19] Strubell, E., Ganesh, A. and McCallum, A., June 2019. Energy and policy considerations for deep learning in NLP.  
Annual Meeting of the Association for Computational Linguistics. 
[So19] So, D., Le, Q. and Liang, C., 2019. The Evolved Transformer. In International Conference on Machine Learning (ICML).

Good News #3: Dire ML estimates were faulty
● Concerns rightly raised about CO2e of ML
● [So19] NAS for Evolved Transformer didn’t include emissions 
● [Str19] estimated emissions of this Neural Architecture Search (NAS) 

○ Cited ~1500 times
○ Used P100 vs TPUv2, US averages vs Google DC: 5X too high for NAS
○ + Used full model vs small proxy for search: 19X ⇒ 88X too high for NAS

● Some papers citing [Str19] confused NAS with Training cost
○ NAS done once per problem domain+architectural search space
○ NAS emissions ~1000x training emissions of DNN model found in search

● How avoid these errors? (Hard to correct published papers)
○ ML authors publish costs, energy, emissions
○ If not, check your results with original authors before publishing?
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https://arxiv.org/abs/1906.02243
https://arxiv.org/abs/1901.11117


Good News #3: Dire ML estimates were faulty

● Right numbers: 
120 TPUv2 hours, 
Cost $40, 
0.00004 car emissions 
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● Claims that training Evolved 
Transformer took: 
2M GPU hours*, 
Cost $millions*, 
CO2e = 5X lifetime emissions 
of a car**

1
2
0
,0
0
0
X

* Thompson, N.C., et al., 2020. The computational limits of deep learning. 
arXiv:2007.05558.
** Freitag, C., et al, 2021. The real climate and transformative impact of 
ICT: A critique of estimates, trends, and regulations. Patterns 2(9).

https://arxiv.org/abs/2007.05558
https://www.sciencedirect.com/science/article/pii/S2666389921001884
https://www.sciencedirect.com/science/article/pii/S2666389921001884
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Conclusion and Recommendations 
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Conclusion
● 10 Lessons learned from previous TPU generations drove next design

● Four generations of TPU significantly improve Perf/TCO and Emissions of ML
○ 2019–2021: ML 70%–80% of FLOPS but only 10%–15% of Google energy use 
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1. DNNs grow rapidly in memory and compute
2. DNN workloads evolve with DNN breakthroughs
3. Can optimize DNN as well as compiler and hardware
4. Inference SLO limit is P99 latency, not batch size
5. Production inference normally needs multi-tenancy
6. It’s the memory, stupid (not the FLOPs)
7. DSA Challenge: Optimize for domain while being flexible
8. Logic, Wires, SRAM, & DRAM improve unequally
9. Maintain compiler optimizations and ML compatibility

10. Design for performance per TCO vs perf per CapEx
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Recommendations for ML Research and ML Practice
● Model: ML researchers keep developing more efficient ML models: 2x–4x

○ Research Challenge: Reduce cost of training and inference of giant models like GPT-3, GlaM
■ Focus on memory accesses vs FLOPS 

○ Practice: Also publish energy consumption and carbon footprint of model to
■ Foster competition beyond ML quality e.g., speed, emissions
■ Ensure accurate accounting of their work (external estimates were off 100x–100,000x)

● Machine: Build faster, more efficient ML HW (e.g., A100 GPU, TPU v4): 2x–4x
○ Research Challenge: Leverage Sparsity with Systolic Arrays
○ Research Challenge: How to do lifecycle costs (Scope 3), not just operational costs (Scope 2)

● Mechanization: Datacenter operators publish datacenter efficiency (PUE): 1.4x 
○ Practice: Also publish % carbon free of energy supply per location 

● Map: ML practitioners use greenest datacenters per region, often in Cloud: 5x-10x
○ Practice: Increase carbon free energy per location (2 in Europe, 3 in US ~90% carbon free energy)

● Co-optimize 4Ms to realize the amazing potential of ML to positively impact many 
fields in a sustainable manner
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Backup Slides 
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Get numbers right to ensure working on the actual biggest 
information technology challenge

● Within IT, more likely climate challenge is lifecycle cost of 
manufacturing computing equipment of all types/sizes 
vs operational cost of ML training 
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1700M cell phones in 2021
2-3 year lifetime

340M PCs
3-5 year
lifetime

12M servers
5-8 year
lifetime 



Discussion: Is Training a large % of Cloud  footprint?
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● Google total energy consumed 2020 = 
15.4 TeraWatt-hours

● Microsoft total energy 2020 = 10.8 TW-h

● Energy for GLaM, GPT-3 is round off error

● How much for all of the training tasks 
vs final run? 
○ Need tools to collect: 

experiment-impact-tracker [Hen20], 
CodeCarbon  [Lac19]

○ Since final run takes ~1 month, development 
tests likely much smaller (like proxy in NAS)

○ AutoML* result used ~same computation to 
explore vs final run computation ⇒ 2X total

* Li, S., Tan, M., Pang, R., Li, A., Cheng, L., Le, Q. and Jouppi, N.P., 2021. Searching for Fast Model Families on Datacenter Accelerators. arXiv preprint 
arXiv:2102.05610.

https://breakend.github.io/experiment-impact-tracker/index.html
https://github.com/mlco2/codecarbon
https://arxiv.org/pdf/2102.05610
https://arxiv.org/pdf/2102.05610


Discussion: ML training vs other activities and overall ML 
energy consumption
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● Jet round trip 1 passenger SF↔NY = 1.2 tCO2e 
○ Air travel 2019: 39M flights, 925M passengers
○ 2.5%  world’s annual CO2 of 33B tCO2

● 2019: 22,000 from 68 countries attended in person two 
main ML Conferences
○ NeurIPS (Vancouver Canada)
○ CVPR (Long Beach CA US)

● If 80% flew = ~21,000 trips,    
~40X CO2e of training 2 large NLP models + 2 NASs 

Model Trained Air Trips
NAS (Primer) 2.2

NAS (Evo. 

Transformer)
2.7

GLaM 33.0       

GPT-3 460.0



Discussion:  Datacenter energy consumption 

● Worry that growth of cloud means explosion of energy use

● End users purchasing fewer servers for on premise datacenters, instead 
computing more in cloud
○ Cloud is greener: Lower PUE, not idle burning power, …

● Science paper*: global datacenter energy consumption increased by only 6% vs 
2010, despite computing capacity increasing by 550% from 2010-2018

● Only 15%-20% workloads moved to the cloud** ⇒ still plenty of headroom for 
Cloud growth to replace inefficient on-premise datacenters
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* Masanet, E., Shehabi, A., Lei, N., Smith, S. and Koomey, J., 2020. Recalibrating global datacenter energy-use 
estimates. Science, 367(6481), pp.984-986. 
Koomey, J. and Masanet, E., 2021. Does not compute: Avoiding pitfalls assessing the Internet's energy and carbon 
impacts. Joule, 5(7), pp.1625-1628.
** Evans, B. 2021, Amazon Shocker: CEO Jassy Says Cloud Less than 5% of All IT Spending, 
https://cloudwars.co/amazon/amazon-shocker-ceo-jassy-cloud-less-than-5-percent-it-spending/

https://datacenters.lbl.gov/sites/default/files/Masanet_et_al_Science_2020.full_.pdf
https://datacenters.lbl.gov/sites/default/files/Masanet_et_al_Science_2020.full_.pdf
https://www.sciencedirect.com/science/article/pii/S2542435121002117
https://www.sciencedirect.com/science/article/pii/S2542435121002117
https://cloudwars.co/amazon/amazon-shocker-ceo-jassy-cloud-less-than-5-percent-it-spending/
https://cloudwars.co/amazon/amazon-shocker-ceo-jassy-cloud-less-than-5-percent-it-spending/


Technology

From Jeff Dean Keynote “Sustainable Computation and Machine Learning Platforms at Google”, 
MIT Climate Implications of Computing & Communications Workshop, 3/3/22

sunroof.withgoogle.com: >170M rooftops mapped w/ solar data across 21,500 cities
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https://sunroof.withgoogle.com/


Helping cities make
meaningful progress toward 
reducing carbon emissions
by using Google Maps data

Transportation emissions

669,000
Total tCO₂e/yr

Rooftop solar potential

669,000
Total tCO₂e/yr

Building emissions

1,210,000
Total tCO₂e/yr

400 cities using Environmental
Insights Explorer today

Google’s aim to help more than 500 
cities reduce an aggregate of 1 
gigaton of carbon emissions annually 
by 2030

From Jeff Dean Keynote “Sustainable Computation and 
Machine Learning Platforms at Google”, MIT Climate 
Implications of Computing & Communications 
Workshop, 3/3/22

Environmental Insights Explorer
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e.g. 1 billion km of transit results 
on Google Maps per day, helping 
to limit carbon emissions by giving 
people access to mass transit 
options, bike routes, and traffic 
information.

From Jeff Dean Keynote “Sustainable Computation and Machine Learning Platforms at Google”, 
MIT Climate Implications of Computing & Communications Workshop, 3/3/22

Find more eco-friendly 
options to get around 
with Google Maps
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See the associated carbon 
emissions per seat for 
every flight, and quickly 
find lower-carbon options 
on Google Flights

From Jeff Dean Keynote “Sustainable Computation and Machine Learning Platforms at Google”, 
MIT Climate Implications of Computing & Communications Workshop, 3/3/22 84


